Quelques notes sur I'état de l'art de
partitionnement des hyperraphes

Here present a repartitioning hypergraph model for dynamic load balancing that
accounts for both communication volume in the application and migration cost
to move data, in order to minimize the overall cost.

Use of a hypergraph-based model allows us to accurately model communication
costs rather than approximating them with graph-based models.

the new model can be realized using hypergraph partitioning with fixed vertices
and describe our parallel multilevel implementation within the Zoltan load-
balancing toolkit.

Introduction

Objective and trade-offs of Repartitioning problem :

1.
2.

3.

balanced load in the new data distribution;

low communication cost within the application (as determined by the new
distribution);

low data migration cost to move data from the old to the new
distribution;

. short repartitioning time.

Total application execution time :
ttal=(t +1

comp comm)

+ tmig + trepart (1)

tcomp : @application’s computation times,

tcomm : @application’s communication times,

tmig : data migration time,

trepart : repartitioning time,

a : indicates how many iterations of the application are executed
between each load-balance operation.

tcomp @and trepart can be ignored; the cost function to be minimized by the
repartitioning algorithm reduces to :

COSltime = tcomm + tmig (2)

the time spent in communication is proportional to the amount of data
being sent. Thus, the
cost function to be minimized by the repartitioning algorithm becomes :

oSty =b D (3)
bcomm : amount of data sent in each iteration
bmig: amount of data sent during migration.
In this work, we present a repartitioning-hypergraph model that
minimizes the sum of total communication volume in the application and
migration cost to move data, as stated in(3).

Il. Previous work on dynamic load
balancing

1. Dynamic load-balancing approaches
Three main methods: scratch-remap method, incremental
method and repartitioning method.

a) Scratch-remap method
The computational model representing the modified structure of
the application is partitioned from scratch without accounting for
existing part assignments. Then, old and new partitions are
remapped to minimize the migration cost.

b) Incremental method
Existing part assignments are used as initial assignments and
incrementally improved by using a sub-optimal cost function that
minimizes either data migration cost (diffusive methods) or
application communication cost (refinement methods).

c) Repartitioning method
Existing part assignments are taken into account to minimize both
data migration cost and application communication cost.

2. Computational Models of Dynamic Load Balancing methods
There are three computational models : coordinate-based models,
graph-based models, hypergraph-based models.

(refer to the article [8] for more details)

a) coordinate-based models

such as Recursive Coordinate Bisection and Space-Filling Curves
b) graph-based models
c) hypergraph-based models

Category Property Coordinate |Graph based |Hypergraph
based based

Scratch-remap |Migration cost high high high

Communication cost high low low
Communication model none approximate accurate

Incremental | Migration cost moderate low low
Communication cost high moderate moderate
Communication model none approximate accurate

Repartitioning |Migration cost n/a low low

Communication cost n/a low low
Communication model none approximate accurate

I11. Preliminaries

e A hypergraph H = (V,N) is defined by a set of vertices V and a set of nets
(hyperedges) N, each net n,€EN isa non-empty subset of vertices. A weight
w; can be assigned to each vertex v,€V ,andacost c¢; can be assigned
toeach net n,eEN

e P={Vi1, V2 ..., Vk} is called a k-way partition of H if each part Vp, p =
1,2,...,k, is anon-empty, pairwise-disjoint subset of V and Z,f,=1 vV,=V

e A partition is said to be balanced if
W,<W, (1+€) forp=12,....k (4)

avg (

2w
e where Wf; @ and y, _wxev and >0 is a predetermined
Vi€V, avg k

maximum tolerable imbalance.

e |In a given partition P, a net that has at least one vertex in a part is
considered to be connected to that part.

e The connectivity Ajof a net njdenotes the number of parts connected by
njunder the partition P of H.

e A net njis said to be cut if it connects more than one part (i.e., j> 1).

e CutCost(H, P) denote the cost associated with a partition P of hypergraph
H.

CutCost(H,P)= c;(A;—1) (5)
n,EN
e This cost metric exactly corresponds to communication volume in parallel
computing

e The standard hypergraph partitioning problem is the task of dividing a
hypergraph into k parts such that :
v the cost (5) is minimized
v the balance criterion (4) is maintained.

1. Hypergraph Partitioning with Fixed Vertices

e The standard hypergraph partitioning problem is the task of dividing a
hypergraph into k parts such that :
v the cost (5) is minimized
v the balance criterion (4) is maintained.

e Hypergraph partitioning with fixed vertices is a more constrained
problem. In this problem, in addition to the input hypergraph H and the
requested number of parts k, a fixed-part function f(v) is also provided as

an input to the problem.

e denoted by :
o f(v)=—1 i.ethe vertex v is freei.e itis allowed to be in any part in
the solution P.
o f(v)=qforl<g<k i.e the vertex is fixed in part qi.e it is required to
be in Vqin the final solution P.

2. Multilevel Partitioning Paradigm

Multilevel partitioning consists of three phases: coarsening, coarse partitioning
and refinement.
(see more details in ref [1] and [2])

a) Coarsening phase.

e hierarchy of smaller hypergraphs that approximate the original one is
generated
b) Coarse partitioning phase.
e The smallest hypergraph obtained at the end of the coarsening phase is
partitioned.

c) Refinement phase
e the coarse partition is projected back to the larger hypergraphs in the
hierarchy and improved using a local optimization method.

IV. Repartitioning Hypergraph Model

e We call the period between two subsequent load-balancing operations an
epoch of the application.

e An epoch consists of one or more computation iterations and the
computational structure and dependencies of an epoch can be accurately
modeled with a computational hypergraph.

h

e The hypergraph that models the " epoch of the application is donated
by H’/=(v’/,N’) and the number of computation iterations in that epoch
by a;.

e Load balancing for the first epoch is achieved by partitioning Hi using a
static partitioner.

e Here the repartitioning hypergraph model appropriately captures both

application communication and data migration costs associated with an
epoch.

e To model migration costs in epoch j, we construct a repartitioning

hypergraph H’=(V’,N’) by augmenting H’ with k new vertices
corresponding to each of the k parts, and |v/| new hyperedges using
the following procedure:

o Scale each net’s cost (representing application communication) in N;
by i

while keeping the vertex weights intact.

o Add a new part vertex u, with zero weight for each part /, and fix
those vertices in respective parts; i.e., f(u,)=ifor1<i<k Hence

V'=V/U(u|l1<i<k)
o Foreach vertex veV' ,add a migration net »n, betweenvand u, if

L

v is assigned to part j at the beginning of epoch j. Set the migration
net’'s cost ¢, to the size of the data associated with v, since this

migration net represents the cost of moving vertex v to a different
part.

cosz’vol = bcom + bmig

cost,,,=«;CutCost (H', P')+ > (A1) (7)
NY)

nve(l\ﬂf j

costm,=o<jz c,(A,—1)+ > e(a-1)

n,€N’ n,&(N'=N7)

C d
4 3
2 4

1%4+2=6 1%3+4=7

10x4+2=42 10x3+4=34

V. Parallel Repartitioning Tool
1. Co

arsening Phase

we approximate the original hypergraph with a succession of smaller
hypergraphs with similar connectivity and equal total vertex and edge
weight.

Parallel matching is performed in rounds. In each round, each processor
broadcasts a subset of candidate vertices that will be matched in that
round. Then, all processors concurrently compute their best match for
those candidates and the global best match for each candidate is
selected.

For fixed-vertex partitioning, vertices that are fixed to different parts, are
not allowed to match.

There are three scenarios in which two vertices match:

o Both vertices are fixed to the same part,

o Only one of the vertices is fixed to a part,

o Both are not fixed to any parts (i.e.,both are free vertices).

2. Coarse Partitioning Phase
In the coarse partitioning phase, we construct an initial partition of the
coarsest hypergraph available.

3. Refinement Phase

The code is based on a localized version of the successful Fiduccia-
Mattheyses method,

The algorithm performs multiple pass-pairs and in each pass, each free
vertex is considered to move to another part to reduce the cut metric.

4. Handling Fixed Vertices in Recursive Bisection

Zoltan uses recursive bisection, to obtain a k-way partition. This recursive
bisection approach can be extended easily to accommodate fixed
vertices.

Then, the multilevel partitioning algorithm with fixed vertices described
above can be executed

This scheme is applied recursively in each bisection.

VI. Experimental Results

1. Repartitioning Approaches
e Repartitioning technique:
o Three categories: scratch-remap, incremental and repartitioning.
o Only refinement approaches within the incremental techniques
category are considered.

e Cost model:
o Coordinate-based models are not considered.

e Optimization method:
o Distinction between single-level versus multi-level partitioners

Repartitioning Cost Optimization

Partitioner technique model method Software
Z-repart repartitioning hypergraph multilevel Zoltan
Z-SL-repart repartitioning hypergraph single level Zoltan
Z-scratch scratch-remap hypergraph multilevel Zoltan
Z-SL-refine iterative hypergraph single level Zoltan
M-repart repartitioning graph multilevel ParMETIS
M-scratch scratch-remap graph multilevel ParMETIS

Properties of the partitioners used in the experimental
evaluation.

We compare six different partitioners given in Table 2 that collectively cover all
options with respect to each of the three aspects considered.

2. Dynamically Perturbed Data Experiments (refer to section 6.2

of [3])
e Two different methods are used to dynamically perturb the data in the

experiments :

o Dynamic structure perturbation
The first method introduces biased random perturbations that change
the structure of the data.

o Dynamic weight perturbation
The second method simulates adaptive mesh refinement.

Name [V | |E| vertex degree Application Area
min max avg

xyce680s 682,712 823,232 1 209 2.4 VLSI design

slac6M 5,955,366 11,766,788 2 4 4.0 Finite element mesh

cagel5 5,154,859 47,022,346 2 46 18.2 DNA electrophoresis

Properties of the test datasets; |V | and |E| are the numbers of vertices and
graph edges, respectively.

e The results indicate that our new hypergraph repartitioning method Z-
repart performs better than M-repart in terms of minimizing the total cost
in the majority of the test cases.

e Therefore, Z-repart provides a more accurate trade-off between
communication and migration costs than M-repart to minimize the total
cost.

3. Adaptive Mesh Refinement Experiments (ref to [3])
4. Term-by-Document Experiments (ref to [3])

References :

[1] : Parallel Hypergraph Partitioning for Scientific Computing.

[2] : Hypergraph based dynamic load balancing for adaptive scientific
computations.

[3] : A Repartitioning Hypergraph Model for Dynamic Load Balancing.

[4] : Graph partitioning model for parallel computing.

[5] : A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.
[6] : Partitioning and Load Balancing for Emerging Parallel Applications and
Architectures.

[7] : Dynamic Load Balancing in Computational Mechanics.

[8] : Partitioning and dynamic load balancing for the numerical solution of
partial differential equations.

http://software.sandia.gov/~kddevin/IPDPS06_Final.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.556
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.556
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8977
http://www.cs.sandia.gov/~kddevin/papers/pp04.pdf
http://www.cs.sandia.gov/~kddevin/papers/pp04.pdf
http://www.cs.ucsb.edu/~gilbert/cs290iSpr2003/presentations/mlevel_serial.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.9586
http://www.sandia.gov/~egboman/papers/JPDC-repart.pdf
http://www.cs.sandia.gov/~kddevin/papers/Catalyurek_IPDPS07.pdf
http://www.cs.sandia.gov/~kddevin/papers/Catalyurek_IPDPS07.pdf

LEXIQUE

Load balancing

Load balancing is dividing the amount of work that a computer has to do between two or more
computers so that more work gets done in the same amount of time and, in general, all users get
served faster. Load balancing can be implemented with hardware, software, or a combination of
both. Typically, load balancing is the main reason for computer server clustering.

http://searchcio-midmarket.techtarget.com/sDefinition/0.,.sid183 ¢¢i214490.00.html
http://wwwcs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/LOADBAL/

Scientific Computing: Finite Elements

Problem Area

Finite methods, especially finite difference (FDM), finite element (FEM) and boundary element
(BEM) methods, are probably the most important techniques for numerical simulation in
mechanical and electrical engineering, physics, chemistry and biology. The finite element method is
used for stability calculation in many areas, e.g. car and plane construction and construction
engineering. 95% of all stability proofs in engine production use FEM. Simulations of heat
conduction, fluid dynamics, diffusion, sound and earthquake wave propagation and chemical
reactions make use of finite element or boundary element methods.

http://wwwcs.uni-
paderborn.de/fachbereich/AG/monien/RESEARCH/FEM/domaindecomp.html

Meéthode des éléments finis

En analyse numérique, la méthode des éléments finis est utilisée pour résoudre
numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple
représenter analytiquement le comportement dynamique de certains systemes physiques
(mécaniques, thermodynamiques, acoustiques, etc.).

http://fr.wikipedia.org/wiki/M % C3 % A9thode des % C3% A91% C3 % A9ments finis

http://fr.wikipedia.org/wiki/M%C3%A9thode_des_%C3%A9l%C3%A9ments_finis
http://fr.wikipedia.org/wiki/Acoustique
http://fr.wikipedia.org/wiki/Thermodynamique
http://fr.wikipedia.org/wiki/M%C3%A9canique
http://fr.wikipedia.org/wiki/Dynamique
http://fr.wikipedia.org/wiki/Analyse_(math%C3%A9matiques)
http://fr.wikipedia.org/wiki/%C3%89quation_aux_d%C3%A9riv%C3%A9es_partielles
http://fr.wikipedia.org/wiki/Analyse_num%C3%A9rique
http://wwwcs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/FEM/domaindecomp.html
http://wwwcs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/FEM/domaindecomp.html
http://wwwcs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/LOADBAL/
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci214490,00.html
http://searchDataCenter.techtarget.com/sDefinition/0,,sid80_gci762034,00.html

Adaptive mesh refinement

In numerical analysis, Adaptive mesh refinement is a method of adaptive meshing. Central to
any Eulerian method is the manner in which it discretizes the continuous domain of interest
into a grid of many individual elements.

http://en.wikipedia.org/wiki/Adaptive mesh refinement

Space-filling curve (Courbe de Peano)

Une courbe de Peano est une fonction continue sur l'intervalle [0, 1], surjective dans le carré
[0, 1] x [0, 1], c'est-a-dire que la courbe passe par chaque point du carré. Elle est une fractale :
bien que formée d'une simple ligne, elle est de dimension 2. Une courbe de Peano est
généralement décrite comme limite d'une suite de courbes. Cette courbe est nommeée en
I'honneur de Giuseppe Peano qui fut le premier a la décrire.

http://fr.wikipedia.org/wiki/Courbe de Peano

http://en.wikipedia.org/wiki/Space-filling curve

Multilevel Hypergraph Partitioning

In

the multilevel paradigm, a sequence of successively coarser hypergraphs is constructed. A bisection
of the smallest

hypergraph is computed and it is used to obtain a bisection of the original hypergraph by
successively projecting and

refining the bisection to the next level finer hypergraph

http://users.ece.utexas.edu/~dpan/2008Fall EE382V/papers/hmetis.pdf

http://users.ece.utexas.edu/~dpan/2008Fall_EE382V/papers/hmetis.pdf
http://en.wikipedia.org/wiki/Space-filling_curve
http://fr.wikipedia.org/wiki/Courbe_de_Peano
http://fr.wikipedia.org/wiki/Giuseppe_Peano
http://fr.wikipedia.org/wiki/Fractale
http://fr.wikipedia.org/wiki/Surjection
http://fr.wikipedia.org/wiki/Fonction_continue
http://en.wikipedia.org/wiki/Adaptive_mesh_refinement
http://en.wikipedia.org/wiki/Grid
http://en.wikipedia.org/wiki/Eulerian_method
http://en.wikipedia.org/w/index.php?title=Adaptive_meshing&action=edit&redlink=1
http://en.wikipedia.org/wiki/Numerical_analysis

Tenseur des contraintes

Le tenseur des contraintes est une représentation utilisée en mécanique des milieux continus pour
représenter I'état de contrainte, c'est-a-dire les forces surfaciques (parfois appelées efforts) mises en
jeu entre les portions déformées du milieu.

http://fr.wikipedia.org/wiki/Tenseur des contraintes

http://fr.wikipedia.org/wiki/Tenseur_des_contraintes
http://fr.wikipedia.org/wiki/Force_(physique)
http://fr.wikipedia.org/wiki/M%C3%A9canique_des_milieux_continus
http://fr.wikipedia.org/wiki/Contrainte
http://fr.wikipedia.org/wiki/Tenseur

Les hypergraphes

Exemple d'hypergraphe:

V={v.v,03,V,.V5:V6V7 1

E= {el,ez,eS,e4} = {{vl,vz,v3},{v2,v3}, {v3,v5,v6},{v4}}.

- ==

]
-~
L
| ——

Figure 1.5. Erample of communication metrics in the graph (left) and

hypergraph (right) models. Edges are shoun with ellipses; the partition boundary is
the dashed line.

ha, = o v
= . he
;oo &2 v h1
I
Y3 v3 h2
Cht - -_
\ -Fv_E p : P ; v h3
R A v5

Fig. 6. Two Hypergraph Representations.

	Load balancing
	Problem Area

	Adaptive mesh refinement
	Space-filling curve (Courbe de Peano)
	Multilevel Hypergraph Partitioning
	Tenseur des contraintes

