
Continuum Modeling using Finite Elements

1 Introduction

Materials modeling at the continuum level can generally be described as the solution of

boundary value problems. For a given physical system, a set of governing equations is derived

based on fundamental principles (equilibrium, conservation of mass, Newton’s Laws, etc.).

Next, a constitutive law is chosen to describe how the material in question responds to its

environment. Depending on the problem of interest, this constitutive law may include such

things as the relationship between applied stress and resulting strain, or between temperature

gradient and thermal flux. Finally, initial and boundary values of the variables are prescribed

to match the physical system of interest, and the equations are solved.

There are a variety of techniques available to achieve these solutions, and various phys-

ical phenomena often result in governing equations of a common form. Thus, many of the

techniques can be applied to a variety of physical systems. Such techniques range from

closed-form analytical solutions, to series expansions and other approximate forms, to com-

putational approaches in which the continuous physical system is discretized in some way

such that the integro-differential equations of the continuous domain are reduced to matrix

equations that can be solved on a computer. The finite element method (FEM) is one such

discretization technique.

The FEM is well-developed and it is quite naturally suited to interfacing with smaller-

scale (i.e. atomistics and dislocation dynamics) modeling techniques. The FEM formulation,

whereby the continuous physical system is represented by a grid of discrete nodes, leads to

a computational scheme that is very close in its structure to that found in the methods at

smaller length scales.

The FEM is a well-established technique for solving continuum models of complex engi-

neering systems. Several commercial packages exist that solve linear and non-linear prob-

lems, static and dynamics problems, solid mechanics, heat and mass transfer, and more.

These packages often have elaborate graphical user interfaces for pre- and post- processing

and multiple modules and subroutines. The software is extremely useful for the solution of

1

classical continuum problems, and their use is recommended for such purposes1.

The FEM serves as the basis for the QC method. For this reason, this part of the tutorial

is an attempt to shed light on the basic steps in formulating and implementing the FEM.

Initially, we will focus on static, linear elastic problems undergoing small strains, and then

generalize to the static, hyper-elasticity formulation, which is the form the FEM takes in the

QC implementation.

2 Formal Description of the Continuum Mechanics Prob-

lem

By now, you will have been through the continuum mechanics part of the tutorial. However,

to clarify the problem we are trying to solve with the FEM, we re-state it here.

∂V

V

u= u0

n

t= t0

Figure 1: General Continuum Mechanics Boundary Value Problem.

The problem considered is shown in fig. 1. A Continuous body occupies volume V and

has boundary ∂V . Each material point is defined by a reference coordinate x. Initially,

the body is stress and strain free, but the body is subjected to fixed displacements on some

portion of its boundary, and prescribed loading in the form of tractions on the remainder of

the boundary. Thus,

u = u0, x ∈ ∂Vu (1)
1There are even relatively good free packages available. See, for example [1].

2

t = t0, x ∈ ∂Vs, (2)

where u is the displacment and the traction, t, applied to a surface with outward normal

vector n is related to the stress, P , at the surface of the body by

t = P T n, (3)

and the superscript T indicates the transpose of a matrix. Note that ∂Vu + ∂Vs = ∂V , and

free surfaces are therefore part of ∂Vs with t0 = 0.

Stresses and strains arise in the body due to these boundary conditions, leading to a

displacement field u and a deformed body described by

φ = x + u, (4)

where φ, x and u are vector fields with D components in D dimensions. The stresses which

arise are dictated by the constitutive behaviour of the material, which we assume here to be

hyperelastic. Thus, there is an elastic strain energy function, W (F), which determines the

energy per unit volume at each point in the body given the deformation gradient, F , at that

point. This deformation gradient is found from the displacement field as

F = ∇φ =
∂φT

∂x
= I +

∂
(

uT
)

∂x
(5)

where I is the identity matrix. Recall that the Lagrangian stress (first Piola-Kirchoff stress),

P , and the Lagrangian tangent stiffness tensor, C are obtained from this strain energy

density as

P =
∂W

∂F
(6)

C =
∂2W

∂F ∂F
. (7)

The goal is to “solve” this problem, in the sense that we seek the equilibrium displacement

field u everywhere in the body given the prescribed boundary conditions and the material

properties. Once we have u, the stress P follows from eqn. (6).

To obtain this solution, we will use the principal of minimum potential energy. The

energy, ψC , of the continuous system (body plus external loads) is 2

ψC =
∫

V
W (x)dV −

∫

∂Vs

tT
0 udA, (8)

Our goal is to find a displacement field u which, for a given set of boundary conditions from

eqns. (1) and (2), minimizes this energy functional.

2For simplicity, we have neglected the possibility of body forces in this derivation.

3

2.1 Linear Elastic Finite Elements

In the QC method, the strain energy functional, W , will be nonlinear and deformations

can, in general, be large. Thus, finite strain hyper-elasticity is the FEM formulation that is

required. It is instructive, however, to first consider the simplified case of linear elastic defor-

mation and small strains, so as to remove certain distractions until later in the presentation.

Thus, we will now simplify the model to the linear elastic, small strain case. In section 5,

we will return to the fully general form used in QC.

We assume that the strain energy takes the form

W =
1

2
cijklεijεkl (9)

where ε is the small strain tensor defined as

ε = sym∇u. (10)

Because the deformation is assumed to be small, the difference between the reference and

deformed configuration is negligible and we needn’t distinguish between the Lagrangian and

Eulerian measures of stress. Indeed we can show that

Pij = σij = cijklεkl (11)

Cijkl = cijkl, (12)

where σ is the Cauchy stress.

Because the matrices σ and ε are symmetric, it is convenient to represent them in a more

compact vector form as follows

σ =

σxx

σyy

σzz

σyz

σxz

σxy

ε =

εxx

εyy

εzz

γyz

γxz

γxy

, (13)

where γxy = 2εxy. This form will be useful later in the derivation of the FEM equations.

When the vector forms of stress and strain are used, the linear elastic constitutive law

becomes

W =
1

2
εT Dε, (14)

σ = Dε, (15)

where D is the second order (6 × 6) elastic stiffness matrix containing appropriate entries

obtained from the tensor c.

4

Using these simplifications, the energy functional for the linear elastic model becomes

ψC =
∫

V

1

2
εT σdV −

∫

∂Vs

uT t0dA, (16)

3 Discretization

∂V
V

u= u0

n

t= t0

Figure 2: Discretized general continuum mechanics boundary value problem.

Displacement fields which minimize eqn. (16) are difficult to obtain for complex geome-

tries or material behaviour if we work in the continuous domain. However, we can replace

the continuous field u with a discrete representation by selecting a set of nodes throughout

the body and solving explicitly for only the displacements at these nodes. The displacement

fields away from the nodes will be determined by a suitable interpolation from the nodal

values. The selection of nodes is completely arbitrary, and can be a non-uniform distribution

of points as illustrated in fig. 2, but of course the positions and density of the nodes will

effect the accuracy of the approximate solution we ultimately obtain. For a collection of n

5

nodes we define two vectors, X and U

X =

X1

X2
...

Xn

, U =

U 1

U 2
...

Un

=

u1

v1

w1

u2

v2

w2
...
un

vn

wn

, (17)

where X contains the coordinates of the nodes, and U contains their displacements,

represented for node i by X i and U i respectively. The last equation above shows each scalar

entry for U in the case of a three-dimensional problem, with u, v and w indicating the x, y

and z components of the each node’s displacement vector.

Between the nodes, an appropriate set of interpolation functions (often called shape

functions) can be used to interpolate values from the nodes to any point in the body. An

expression for the displacement field everywhere in the body can then be written as:

u(x) = NU =
[

N 1(x) N 2(x) . . . Nn(x)
]

U 1

U 2
...

Un

, (18)

where the matrix N contains the chosen shape functions. Normally, the same shape function

is used for each degree of freedom, and it is not physically sensible to use information from

one degree of freedom to interpolate the other. Thus, for the case of a three-dimensional

problem, eqn. (18) becomes

u(x) =

u(x)
v(x)
w(x)

=

N1 0 0 N2 0 0 Nn 0 0
0 N1 0 0 N2 0 . . . 0 Nn 0
0 0 N1 0 0 N2 0 0 Nn

u1

v1

w1

u2

v2

w2
...
un

vn

wn

, (19)

where Ni(x) is the shape function associated with node i. It should be emphasized that the

shape functions are all functions of position, as are the interpolated fields, u(x). The vectors

6

of nodal displacements and positions, U and X, are not functions of position however, as

they are fixed by the selection of the nodal points. The vector U is the set of unknowns for

which we are solving.

The isoparametric formulation. It is often convenient to introduce a change

of coordinates, and write both u and x as interpolated fields of a new coordinate

variable ξ. In such a formulation, the shape functions are explicitly functions of ξ

and both u(ξ) and x(ξ) are interpolated using equations analogous to eqn. (18).

Usually, the shape functions for x and u are chosen to be the same, and hence

the formulation is referred to as isoparametric. While this formulation offers

significant efficiencies in terms of assembling the final equations, there are no

conceptual differences between the formulation presented here, in which we con-

tinue to work in the physical coordinate system x, and the isoparametric one.

For simplicity, the details of the isoparametric formulation are left to section 5.

The strain matrix at any point in the body is obtained by a suitable linear operator

(cf. eqn. (10)) on the displacement fields

ε = Su = SNU = BU , (20)

where we have defined the matrix

B = SN . (21)

Finally, the stresses in a linear elastic material are found from eqn. (15) to be

σ = Dε = DBU . (22)

We are now at a point where, given a vector of nodal displacements, we can obtain an

interpolated field of the displacements, strains and stresses everywhere in the body. Making

use of these interpolated fields in eqn. (16) will allow us to solve for the nodal displacements.

3.1 Solution of the Discretized System

Starting from the total energy of eqn. (16), we make use of the discretized displacement to

write an approximate total energy as

ψ =
∫

V

1

2
UT BT DBUdV −

∫

∂Vs

UT NT t0dA, (23)

where we have made use of eqns. (18), (20) and (22). We seek the nodal displacements such

that ψ is minimized. Minimization of a function requires that derivatives with respect to

the solution variables are zero, i.e.,

∂ψ

∂U
=
(
∫

V
BT DBdV

)

U −
∫

∂Vs

NT t0dA = 0 (24)

7

where we have moved U outside of the integration because it is not a function of position.

Close examination of this equation shows that it is of the form

KU − f = 0, (25)

where f is the applied force vector of length Dn (D is the dimensionality of the problem, n is

the number of nodes) and K is the stiffness matrix of dimension Dn×Dn. In this equation,

we have defined

f =
∫

∂Vs

NT t0dA (26)

K =
∫

V
BT DBdV. (27)

Thus, a set of nodal displacements that satisfies the required equilibrium conditions is

simply

U = K−1f , (28)

and the approximate solution of the original boundary problem is found from the interpolated

fields, namely eqns. (18), (20) and (22).

3.1.1 Comments

Notice that we have not yet introduced the concept of an “element”, something normally

considered the essential building block of the FEM. In fact, the “elements” are hidden in

the appropriate choice of the shape functions, N , but this formulation is not limited to the

conventional finite element approach. Recent developments of so-called “meshless methods”

(see, for example, [2] and [3]) begin from a formulation similar to this, and make use of

shape functions that do not require the explicit choice of elements that will follow in the

next section. There are pros and cons to both the meshless and meshed methods, but the

meshed methods like FEM are certainly more widely used and developed.

The devil, as they say, is in the details. In this case, the devil is in choosing shape

functions such that the evaluation of the force vector and stiffness matrix is a computationally

efficient, but still physically accurate, endeavor. In the next section, some of these details

are elucidated.

4 Implementation

In this section, the details of implementing a computationally efficient scheme for the solution

of eqn. (28) will be discussed. The presentation will be general, but it is often difficult to

understand the details in a fully generalized context. Thus, to aid in understanding, a simple

8

one-dimensional example will be developed fully during the discussion, with some additional

information provided as a starting point if the participant chooses to explore more complex

problems at a later date.

4.1 Choosing Shape Functions and Elements

Solution of eqn. (28) requires the computation of the stiffness matrix, K, which in general

involves Dn×Dn integrations over the entire domain V. Without some consideration of ways

to simplify this calculation, it is easy to see that the computational demand could quickly

become much too great.

∂V
V

u= u0

n

t= t0

Figure 3: Elements connecting the nodes to form a finite element mesh.

In the FEM, this simplification is achieved by connecting the nodes of the discretized

problem by elements (shown schematically in fig. 3), and defining the shape functions with

respect to these elements. Specifically, the shape functions are given the following 3 at-

tributes:

• Compact support. Ni is defined to be identically zero in any element not touching node

i.

• The delta function. Ni must satisfy:

Ni(Xj) = δij =
{

1, when i = j
0, when i 6= j

. (29)

9

This ensures that the value of the interpolated displacement field at the position of

node i is equal to the nodal value, u(xi) = U i.

• The interpolation property. For the special case when the displacements are equal at

every node in the mesh, the interpolated field should be exactly uniform. To guarantee

this behaviour, the shape functions must satisfy

n
∑

i=1

Ni(x) = 1 (30)

for all x ∈ V .

Figure 4: Shape functions for a one-dimensional domain. (a) Discretized domain. (b) Linear
Elements A-F. (c) Quadratic Elements I-III.

As a simple example, consider fig. 4. The one-dimensional domain from r = a to r =

b is represented by 7 nodes as shown in (a). In fig. 4(b), these nodes are connected by

6 elements, and the shape functions for nodes 3 and 7 are shown. It is clear that the

interpolated displacement field will only depend on the position of node 3 within elements B

and C. Conversely, node 3 is only directly affected by the fields within these elements. These

elements are described as linear, since they linearly interpolate the displacements between

each pair of nodes.

In fig. 4(c), an alternative choice of elements in shown, where each element includes 3

nodes along the domain. Shape functions for nodes 3 and 6 are shown, and are parabolic

10

within each element. Notice that the shape functions for node 3 are identically zero at all

other nodes, including the nodes internal to elements I and II. These elements are described

as quadratic, since they interpolate the displacements within each element with quadratic

functions.

Restricting the shape functions to have compact support and to satisfy eqn. (29) leads

to an important simplification in the evaluation of integrals like the stiffness matrix. First,

it allows this integration to be done on an element-by-element basis, with the important

property that the integral within a given element depends only on the displacements of the

nodes which make up that element. Second, it ensures that entry (i, j) in the global stiffness

matrix Kij will only be non-zero if nodes i and j are connected through an element. This

allows for the definition of an elemental stiffness matrix (as will be discussed next) and

further simplifies the calculation of K.

Figure 5: Linear and Quadratic Elemental Shape functions for a one-dimensional domain.

Shape functions within a single element for the one-dimensional case are shown in fig. 5

along with their functional form. Reference [4] contains a collection of shape functions for

1, 2 and 3 dimensional continuum problems.

An important point about standard FEM formulations is that the shape functions provide

continuous interpolations of the primary variables (i.e. the displacements) but derivatives

11

Figure 6: 1D example of interpolation with linear elements. In (a), the exact function is
shown, whereas (b) shows the interpolated function given the exact values Ui at each node.

are only continuous within each element. This means that quantities like stress and strain

will not be continuous from one element to the next. This is illustrated in 1D in fig. 6.

In (a), a displacement field u(r) is shown, with the nodal values Ui as indicated. Using

linear elements leads to the interpolated field shown in (b). It is clear that the slopes of the

piecewise linear segments are not continuous across the element boundaries.

The example of fig. 6 can sometimes be confusing. In our problem, we do not know the

exact field u(r). Instead we are devising a method to solve for the nodal values Ui, after

which we obtain an approximation for u(r) throughout the domain. There is no guarantee

that the nodal values obtained from our solution will satify Ui = u(ri) where u(ri) is the

exact (and unknown) displacement at the position of node i, as fig. 6 suggests.

4.2 Elemental Quantities

Without any loss of generality, the integrals of eqn. (27) can be broken down into sums of

integrals over the individual elements. We can therefore write the global force vector and

stiffness matrix as

f =
∑

elements

∫

∂V e
s

NT t0dA (31)

K =
∑

elements

∫

V e
BT DBdV, (32)

12

where V e is the volume of element e. Before choosing the appropriate shape functions,

such a change from a single integral over the entire body to a sum of integrals over smaller

regions provides no computational benefits, but the suitable choice of shape functions with

compact support makes it possible to achieve a real gain in computational efficiency by an

element-by-element summation.

The stresses, strains and tractions in a specific element, by virtue of the compact support

of the shape functions, depend only on the displacements of nodes directly connected to that

element. Therefore, we can define an elemental stiffness matrix and force vector, compute

these quantities, and then add them together in the correct way to assemble the global

quantities.

Thus, we define

f e =
∫

∂V e
s

(N e)T
tedA (33)

Ke =
∫

V e
(Be)T

DeBedV, (34)

where the superscript e refers to the properties and quantities of a specific element and the

total stiffness matrix and force vector become

K =
∑

elements

Ke (35)

f =
∑

elements

f e. (36)

Starting from a displacement vector, U e that contains only the displacements of the nodes

directly associated with the element, we find the displacement, strain and stress within each

element from equations analogous to the global equations presented earlier:

u(x) = N e(x)U e (37)

ε(x) = Su = BeU e (38)

σ(x) = Deε. (39)

where x is now taken to refer only to positions inside the element under consideration. For

example, consider the 1D mesh of linear elements in fig. 4(b). The global displacment vector

U contains seven components, one for each node. There will be a total of six elemental

displacement vectors, each with two components. For example ue for the element labelled

B would contain the displacements of the nodes numbered 2 and 3 in the global system.

Advantages in the use of the elemental quantities come mainly in efficiencies that can be

gained when coding the FEM. Also, we shall see in the discussion of 2D and 3D meshes later

that the elemental quantities provide a more efficient means of numerical integration.

13

Note the natural capacity of the FEM to include non-uniform material properties in a

body. Each element can have a different relationship between stress and strain simply by

assigning different elemental material stiffness matrices, De.

Clearly, there is a straightforward correspondence between the elemental vectors U e and

Xe and the global vectors U and X through the global numbering of the nodes. We shall see

how the element-by-element approach also allows for efficient assembly of global quantities

in section 4.5.

4.3 A Simple Example: Axi-Symmetric, Plane Strain Elasticity

Figure 7: Pressurized cylinder.

The problem of a long cylinder, subjected to both internal and external pressure (see

fig. 7), is one that can be described by one variable: the radial component of displacement.

The symmetry of the cylinder is such that material points only move along radial lines.

If the cylinder is long along its axis, and the ends constrained, there is also no strain in

the axial direction. Further, the solution to this problem can be found analytically in many

elementary mechanics texts (for example [5, 6]). Here, we develop the matrices S, Be and De

for the simple case of the plane strain, axi-symmetric elastic cylinder using linear elements.

A 1D FEM program is provided with this tutorial that will perform elastic (and plastic)

calculations on this domain. Details of S and De for other important systems can be found

in references such as [4, 7, 8].

For axi-symmetric plane strain, there is only one non-zero displacement, the radial dis-

14

placement ur. Within each linear element, there are 2 nodes (see fig. 4), and thus

ur(r) =
[

N1(r) N2(r)
]

[

U1

U2

]

= U1N1 + U2N2. (40)

As well, only 2 components of the strain are non-zero

εrr =
∂ur

∂r
(41)

εθθ =
ur

r
(42)

and so we obtain S from
[

εrr

εθθ

]

=

[

∂
∂r
1
r

]

ur = Sur. (43)

The matrix Be is then

Be = SN e =

[

∂N1

∂r
∂N2

∂r
N1

r
N2

r

]

=

[

−1
r2−r1

+1
r2−r1

r2−r
r(r2−r1)

r−r1

r(r2−r1)

]

, (44)

where we have used the results of fig. 5. Finally, the material stiffness matrix comes from

the linear elastic relations between stress and strain. In this case, with only two non-zero

strains we have

σrr =
Ẽ

1 − ν̃2
(εrr + ν̃εθθ) (45)

σθθ =
Ẽ

1 − ν̃2
(εθθ + ν̃εrr), (46)

where

Ẽ = E/(1 − ν2), ν̃ = ν/(1 − ν), (47)

E is Young’s modulus and ν is Poisson’s ratio. From these equations we can write

σ =

[

σrr

σθθ

]

= Deε =
Ẽ

1 − ν̃2

[

1 ν̃
ν̃ 1

] [

εrr

εθθ

]

. (48)

Note that the axial stress, σzz is also non-zero, but it does not enter into the calculations

directly3 and can be left out of the formulation. It can be obtained, if necessary, as a

post-processing step from the final solution using

σzz = ν (σrr + σθθ) . (49)

15

Figure 8: Gaussian quadrature of a linear function.

4.4 Numerical Integration

The solution procedure outlined in the previous section requires the rapid and accurate

evaluation of an integral over each element for every evaluation of the quantities ψ, f e and

Ke. An extremely efficient numerical scheme that retains good accuracy and is well-suited

to the FEM is Gaussian quadrature.

Gaussian quadrature allows for the integration of a function by the evaluation of that

function at only a small number of points. Formally, the volume integral of a function g(x)

becomes
∫

V e
g(x)dV =

ngauss
∑

g=1

wgg(xg), (50)

where xg are a set of discrete Gauss points and wg are the corresponding Gauss weights.

Polynomial functions of a known degree can be integrated exactly with a well-defined number

of Gauss points. Consider, for example, evaluation of the integral of a linear function over an

interval from a to b as shown in fig. 8. This integral can be computed exactly by multiplying

the length of the interval (wg) by the function at the midpoint (g(xg)) as illustrated in fig. 8.

Thus, we require only one Gauss point in this case, but note that the location of the Gauss

3This is because εzz = 0 and therefore the product εzzσzz in eqn. (16) does not contribute to the integral.

16

point must be the center of the interval for the integral to be accurate.

The integrands of eqns. (16), (33) and (34) are not of known polynomial order because of

the generality of the function W . However, for the special case of a linear elastic material, the

polynomial order of the functions to be integrated is known exactly and depends only on the

choice of elements and shape functions. Hence, the required number and location of Gauss

points to achieve the desired accuracy is also known. Details of the locations and weights

for higher order polynomials in one, two and three dimensions can be found in references

[4, 7, 8].

The important computational efficiency that is gained by using Gaussian quadrature is

that quantities like (Be)T DeBe need only be evaluated and stored at the Gauss points,

and thus they can be stored as numerical values rather than functions of position. Further,

notice that Be and De do not depend on the solution variable (the displacements). Therefore,

they need only be evaluated once at the time that the initial mesh is defined, and can be

subsequently re-used throughout the solution of multiple loading configurations. For non-

linear material behaviour, this remains true of the matrix Be, although the material stiffness

De will change with changes in displacements.

In our axi-symmetric example with linear elements, a single Gauss point at the center

of each element will suffice to provide sufficient integration accuracy. In performing the

integration, however, we must remember that we are really integrating around a cylinder,

and thus an approximation to the area swept out by the element in one full revolution must

be used. Thus we choose a single Gauss point with position and weight

rg =
r1 + r2

2
(51)

wg = r2 − r1, (52)

and the integral becomes
∫

V e
(Be)T

DeBedV = 2πrgwg

{

(Be(rg))
T

DeBe(rg)
}

. (53)

The integrations involved in computing the elemental force vector f e are handled in a

similar fashion, and will not be elaborated here. In essence, integrals over the surface (in 3D)

or along the boundary (in 2D) are treated using shape functions compatible with the reduced

dimensionality compared to the integral over the body. It is worth commenting, however,

on the physical interpretation of what the integration of f e effectively accomplishes. Recall

that te is a general traction applied over a surface of an element. Schematically, it may look

something like fig. 9(a), applied to either a linear (3-node) or a quadratic (6-node) triangular

element. The integration of this traction effectively computes equivalent forces to be applied

directly to the nodes in the element, which are then assembled into the global force vector.

17

Figure 9: Schematic of the result of integrating the applied tractions. (a) Applied tractions.
(b) Equivalent forces lumped onto nodes.

This is illustrated schematically in fig. 9(b). Note that the distribution of the force between

the element’s nodes will depend on the elemental shape functions being used.

In our simple example, there is either an internal pressure pi or an external pressure po,

or both. Thus the global force vector will be all zeroes but for the entries corresponding to

the nodes at r = a and r = b. These will be

fa = 2πapi (54)

fb = −2πbpo (55)

where care has been taken to use the correct outward surface normal in each case and a

positive pressure is conventionally taken to mean a compressive force acting on an area.

4.5 Global Stiffness Matrix Assembly

In the previous section, we computed the elemental stiffness matrix, Ke. Note that this

matrix will contain Dne × Dne entries, where ne is the number of nodes per element and

D is the number of dimensions of the problem. The final step before solving the matrix

equation is to assemble these elemental matrices into the global stiffness matrix.

18

The elemental stiffness matrix was computed with reference to a local numbering scheme

for the nodes, but the numbering of the nodes in the global displacement vector U must be

followed in the final equation. However, a straightforward mapping can be used to insert the

elemental stiffness entries into the global stiffness matrix.

Figure 10: Simple one-dimensional mesh with three linear elements and four randomly num-
bered nodes.

Consider a specific mesh in our simple one-dimensional axi-symmetric formulation, con-

taining four nodes and three elements as shown in fig. 10. The elements are labeled A, B

and C, but for generality, the nodes have been numbered in a random order. Assume that

we have computed elemental stiffness matrices KA, KB and KC . For example, we have

found KA by considering nodes 2 and 4, and found values that we will denote by4

KA =

[

KA
11 KA

12

KA
21 KA

22

]

. (56)

Similar notation will be used for elements B and C. Note that the subscripts 1 and 2 in KA

refer to the local node numbering within the element, and globally these nodes are numbers

2 and 4. Globally, then, this matrix relates the forces and displacements of nodes 2 and

4, but contributes nothing to interactions between any other pair of nodes. We can then

expand the elemental stiffness matrix to global size as follows

KA,Global =

0 0 0 0
0 KA

11 0 KA
12

0 0 0 0
0 KA

21 0 KA
22

, (57)

and similarly expand KB and KC

KB,Global =

0 0 0 0
0 0 0 0
0 0 KB

22 KB
21

0 0 KB
12 KB

11

, KC,Global =

KC
22 0 KC

21 0
0 0 0 0
KC

12 0 KC
11 0

0 0 0 0

, (58)

4Often, and certainly for this linear elastic example, Ke is symmetric and therefore Ke

12
= Ke

21

19

since element B connects nodes 3 and 4, while element C joints nodes 1 and 3. The global

stiffness matrix, from eqn. (32) is then

K =
∑

elements

Ke,Global = KA,Global + KB,Global + KC,Global (59)

and therefore

K =

KC
22 0 KC

21 0
0 KA

11 0 KA
12

KC
12 0 KB

22 +KC
11 KB

21

0 KA
21 KB

12 KA
22 +KB

11

. (60)

4.6 Boundary Conditions

Boundary conditions consist of two types, as illustrated in fig. 1. The first type, in which

there is a prescribed traction on the boundary, has naturally led to the definition of the

force vector f . As we have discussed, this boundary condition will be satisfied up to the

approximation involved in “lumping” the distributed traction to the nodes.

The second condition, where the displacement is prescribed on a segment of the boundary,

requires the displacement of any node on this segment to be exactly the prescribed value. In

this case, we do not wish to “solve” for the displacement of these nodes but rather to enforce

their displacements as a constraint on the solution of eqn. (28). In the plane strain example

discussed herein, this corresponds to prescribing the radial displacement at either the outer

or inner surface of the cylinder, rather than specifying a pressure.

Displacement constraints can be treated directly by a simple rearrangement of the order

of the scalar equations in eqn. (28). Practically speaking, this amounts to a renumbering

of the nodes, although efficient FEM implementations can perform this operation through

appropriate book-keeping without actual renumbering. Imagine we renumber the nodes so

that all the nodes which have fixed displacement appear first in the vector U . Then we can

partition our matrix equation as

[

KFF KFN

KNF KNN

] [

UF

UN

]

=

[

F F

F N

]

, (61)

where the subscript F refers to the “fixed” degrees of freedom, where the displacement is

constrained and the subscript N means “not fixed”. This can be written as two separate

equations

KFFUF + KFNUN = F F (62)

KNF UF + KNNUN = F N , (63)

20

and the second of these can be inverted to find displacement of all nodes that are “not fixed”

UN = K−1
NN (F N − KNF UF) . (64)

Generally, forces will arise on the fixed nodes due to their constraint. These forces can now

be computed directly from eqn. (62) if they are desired.

4.7 Matrix Inversion

The final step in the solution is the inversion of the matrix K. There are a variety of matrix

inversion algorithms available in the literature (see, for example, [9], [10]) and their details

need not be discussed here. Quite often, the matrix K is symmetric and therefore symmetric

solvers can be used. As well, significant efficiency in both storage and computational time

can be gained by recognizing that the matrix is quite sparse, i.e. there are many zero entries

as shown in eqn. (60). Algorithms to re-number the nodes such that the resulting stiffness

matrix has an minimized bandwidth are also widely available. A minimized bandwidth im-

plies that the non-zero entries are moved as close to the diagonal as possible by appropriately

renumbering the nodes. This will leave the zero entries out in the top-right and lower-left

corners of the matrix and allows for reduced storage requirements and faster computations.

Due to time constraints, the details of such computational optimizations are not discussed

in this tutorial, however we note that the QC code provided includes a bandwidth optimizer

and uses an efficient symmetric matrix solver. The stiffness matrix itself is stored in such a

way as to minimize the amount of wasted (zero) storage.

5 QC Finite Elements: Hyper elastic, finite deforma-

tion formulation

The foregoing discussion has focussed on the simple case of linear elasticity and small strains

to clarify the essential concepts of the FEM. However, within QC the FEM is slightly more

complicated due to the nonlinear material response and nonlinear (finite strain) deformation

response that is required. In the remainder of the tutorial, these aspects are discussed.

5.1 Shape functions in 2D and 3D: The parent element and the

isoparametric formulation.

In 2D or 3D, as illustrated in fig. 11, the shape and size of each element will differ depending

on the distribution and density of the nodes. Thus, the shape functions within each element

will be different in each element. For efficient implementation of the shape functions for an

21

19

21

10

13

2
x

y
η

ξ

1
3

2

η=1

ξ=1

Figure 11: Elements of arbitrary size and shape are first refered to a local node numbering
scheme, and then mapped to a parent element for efficient implementation.

arbitrary mesh, the concept of a parent element is used. In this discussion, we will focus

on the simple case of 3-node triangular elements in 2D, but the procedure applies for any

element type in any number of dimensions.

Consider the highlighted element in fig. 11, which is defined by nodes 10, 21 and 19. The

corresponding shape functions N10, N21 and N19 need to be defined within the element. In

order to do so, the nodes are first referred to by a numbering scheme that is local to the

element in question. The element is then mapped to the parent element by a transformation

of coordinates from the physical space x to the parent space ξ. This mapping is conveniently

accomplished by interpolating the nodal coordinates X i using shape functions defined in the

parent element. Thus within a given element

x(ξ) = N e(ξ)Xe, (65)

where we have defined N e and Xe, the elemental shape function matrix and the elemental

nodal vector. Specifically, for the example of the 3-node triangular elements in 2D these take

22

the form

N e =

[

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]

Xe =

x1

y1

x2

y2

x3

y3

, (66)

where the numbering, i = 1 . . . 3, refers to the local node-numbering illustrated in fig. 11.

These matrices are the 2D, isoparametric analog to the 1D example of eqn. (37). The linear

shape functions for these elements are

N1 = ξ (67)

N2 = η (68)

N3 = 1 − ξ − η. (69)

Note that within the parent element, the nodal displacements can be interpolated using

the same shape functions, i.e.,

u(ξ) = N e(ξ)U e, (70)

and therefore this is often referred to as the isoparametric formulation. In principal, one

could use different interpolation schemes for x and u, making the scheme something other

than isoparametric.

5.2 Solution Procedure: Energy Minimization

Returning to eqn. (8), prior to the introduction of the linear elastic strain energy density,

we can write a more general energy for the discretized system as

ψ =
nelem
∑

e=1

(

∫

V e
W [F (x)]dV −

[

∫

∂V e
s

tT
0 NdA

]

U

)

. (71)

This is the hyper-elastic analogue of eqn. (23), where we have broken up the integral over the

body into a sum of integrals over each element. We have introduced the approximate form

of u from eqn. (18), and note that the nodal displacements U are not functions of position

and therefore can come out of the last integral. There is an implicit, nonlinear, dependence

of W on U through F as we shall see next. Making use of the isoparametric mapping to the

parent element requires a change of variables from x to ξ, so that

ψ =
nelem
∑

e=1

(

∫

Ωe
W [F (ξ)]J dΩ −

[

∫

∂V e
s

tT
0 NdA

]

U

)

, (72)

23

where Ωe is the volume of the parent element in the transformed space, and J is the Jacobian

determinant of the mapping, i.e.,

J = |J | , (73)

where

J ≡ ∂xT

∂ξ
. (74)

Using the elemental form for the interpolation of x (eqn. (65)) and indicial notation for

clarity5, J is given by

Jij =
∂xi

∂ξj
=
∂N e

ik

∂ξj
Xe

k (75)

Note that we will, for brevity, leave the surface integral of eqn. (72) in terms of the physical

coordinates, x.

Our goal is to solve for the displacement vector U such that ψ is minimized. Thus, we

require that the vector equation

∂ψ

∂U
= 0 =

nelem
∑

e=1

(

∫

Ωe

∂

∂U
(W [F (x)])J dΩ −

∫

∂V e
s

tT
0 NdA

)

(76)

is satisfied. This provides 3n equations for the 3n unknown nodal displacements in U . Note

that the energy density W depends on U through the deformation gradient, F . Thus we

can write in indicial notation

∂W

∂Ui

=
∂W

∂Fjk

∂Fjk

∂Ui

= Pjk

∂N e
ji

∂ξl
J−1

lk , (77)

where we have used eqns. (5) and (70) to obtain the result

Fij = δij +
∂Nik

∂ξl
J−1

lj Uk. (78)

Inserting these results back into eqn. (76) we have

0 =
nelem
∑

e=1

(

∫

Ωe
Pjk

∂N e
ji

∂ξl
J−1

lk J dΩ −
∫

∂V e
s

t0jNjidA

)

(79)

for all i = 1 . . . 3n

5.3 The Newton-Raphson Method

Because the energy functional W is generally nonlinear with respect to U , it is necessary

to use an iterative scheme to solve eqn. (79). One approach is the Newton-Raphson (NR)

method, whereby we imagine starting from some initial guess to the displacement vector,

5The Appendix to this document contains a review of indicial notation.

24

U 0. We seek to iteratively improve on this guess through incremental changes ∆U m that

will lower the total energy of the system from ψ(Um) to ψ(Um + ∆Um) where Um is the

mth iterant of the solution. We can find ∆Um by using a linear approximation to eqn. (79):

∂ψ

∂U

∣

∣

∣

∣

∣

U
m+1

≈ ∂ψ

∂U

∣

∣

∣

∣

∣

U
m

+
∂2ψ

∂U∂U

∣

∣

∣

∣

∣

U
m

(

Um+1 − Um
)

= 0, (80)

where the last equality comes from recognizing that we seek Um+1 that satisfies eqn. (79)

given that Um does not. Solving for Um+1

Um+1 = Um + ∆Um (81)

where

∆Um = (Km)−1rm (82)

and Km and rm, referred to as the tangent stiffness matrix and the residual vector respec-

tively, are equal to

Km =
∂2ψ

∂U∂U

∣

∣

∣

∣

∣

U
m

(83)

rm =
∂ψ

∂U

∣

∣

∣

∣

∣

U
m

. (84)

Note the similarity between eqn. (82) and eqn. (28). While the tangent matrix and residual

must be computed with each iteration, their structure is the same as for the elastic case.

Thus, the same storage and solution techniques can be used. This process can then be

iterated until the norm of rm is made suitably small.

In practice, the algorithm just described may have difficulty converging for functions that

are significantly different than the linear approximation of eqn. (80). As a result, the actual

approach is to use the ∆Um as a direction for the displacement increment, rather than the

increment itself. Thus, each change to the displacements takes the form

Um+1 = Um + α∆Um (85)

where α is chosen such that ψ(Um+1) is minimized along the direction of ∆Um.

The quantities K and r required for the NR method can be computed by differentiating

eqn. (72). The results of this differentiation are

r =
nelem
∑

e=1

re (86)

K =
nelem
∑

e=1

Ke, (87)

25

where we have defined the elemental residual vectors and elemental stiffness matrices as

re
i =

∫

Ωe
Pjk

∂N e
ji

∂ξl
J−1

lk J dΩ −
∫

∂V e
s

t0
jNjidA (88)

Ke
ij =

∫

Ωe
Cmkrs

∂N e
rj

∂ξn
J−1

ns

∂N e
pi

∂ξl
J−1

lk J dΩ. (89)

These are analogous to the elemental quantities f e and Ke given in eqns. (33) and (34) for

the linear elastic system.

The above integrals are, as in the elastic case, handled using Gaussian quadrature, al-

though in the QC formulation this is nearly a trivial statement. Because of the linear

elements employed, the deformation gradient, and therefore the strain energy and its deriva-

tives, are constant throughout a given element. Thus, the integration amounts to multiplying

a constant value times the area of the element.

5.4 Generalized Plane Strain

The QC method makes use of 2D, 3-noded, triangular elements. Although the body is

assumed to be 2D, the displacement field permits 3 components. This is sometimes refered to

as a “generalized plane strain” formulation. In molecular dynamics simulations of a crystal,

an equivalent situation would be one where periodic boundary conditions are employed in the

out-of-plane direction, with the periodic length being as small as possible to fully reproduce

the crystal structure.

The main effect of generalized plane strain on the details presented herein is that the

interpolated phyisical coordinates, x, and the interpolated displacements u have different

dimensions. The interpolation of x is

x =

[

N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]

x1

y1

x2

y2

x3

y3

, (90)

where the numbering, i = 1 . . . 3, refers to the local node-numbering in the element. Because

26

the displacements have 3 components, they are written

u(x) =

N1 0 0 N2 0 0 N3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3

u1

v1

w1

u2

v2

w2

u3

v3

w3

. (91)

The shape functions, Ni, are as given in eqns. (67)-(69).

This imposes constraints on the deformation gradient, which will assume the form

Fij =

1 + ∂u
∂x

∂u
∂y

0
∂v
∂x

1 + ∂v
∂y

0
∂w
∂x

∂w
∂y

1

. (92)

6 Exercises

1. Consider the function u(x) = 3x2 + 2x + 1 on the domain 0 ≤ x ≤ 3. Using 3 nodes

located at x = {0, 1, 3} and Ui = u(xi):

i. Find the approximate u(x) using 2 linear elements.

ii. Find the approximate u(x) using 1 quadratic element.

iii. Verify that the interpolated function is C0 continuous across element boundaries.

2. Verify that eqn. (30) is satisfied for the shape functions shown in fig. 5.

3. Use Gaussian integration to integrate the quadratic function g(x) = Ax2 +Bx+C on

the domain x = −1 . . . 1.

i. Verify that 2 Gauss points at xg = ±1/
√

3 and wg = 1 yields the exact integral.

ii. Compute the error if xg = ±1/2 and wg = 1 are used instead.

4. Verify that eqn. (11) holds.

5. Derive eqns. (75) and (89).

27

A Appendix: Indicial Notation

Indicial notation is a short-hand notation which facilitates the writing and manipulation

of expressions in continuum mechanics in general and elasticity theory in particular. The

discussion in this section is based partly on Lai et al. [11].

A.1 Dummy indices and the summation convention

Consider the sum,

S = a1x1 + a2x2 + . . .+ anxn.

We can write this using a summation symbol,

S =
n
∑

i=1

aixi =
n
∑

j=1

ajxj =
n
∑

m=1

amxm.

Indices i, j and m are dummy indices, in the sense that the sum is independent of the letter

used.

Einstein’s Summation Convention: A simplified notation where the
∑

symbol is dropped

and any index appearing twice in a term is taken to be a dummy index and summed over,

S = aixi = ajxj = amxm = a1x1 + a2x2 + . . .+ anxn.

Examples for n = 3,

1. aixi = a1x1 + a2x2 + a3x3

2. aiai = a2
1 + a2

2 + a2
3

3. aii = a11 + a22 + a33

4. Vector a is written ai

Scalar Product: If a and b are vectors with components ai and bi, we have a · b = aibi

and |a| =
√
aiai.

Notes:

(i) An index cannot appear more than twice in an expression.

The expression aibixi is meaningless. To sum over three or more terms it is necessary

to write the sum explicitly
∑n

i=1 aibixi.

28

(ii) Double sums and beyond follow as expected, e.g.

aijxixj = a11x1x1 + a12x1x2 + a13x1x3 +

a21x2x1 + a22x2x2 + a23x2x3 +

a31x3x1 + a32x3x2 + a33x3x3.

A.2 Free Indices

An index which appears only once in each term of an equation is referred to as a free index.

A free index takes on the values 1, 2, . . . , n, one at a time, e.g.

aijxj = bi. (93)

Here i is a free index and (93) corresponds to a system of n equations,

a11 x1 + a12x2 + . . . a1nxn = b1
...

an1 x1 + an2x2 + . . . annxn = bn

Notes:

(i) All terms in an expression must have the same free indices.

The expression aijxj = bk is meaningless.

(ii) There can be as many free indices as necessary.

For example in the expression aijkxk, i and j are free indices resulting in n×n expres-

sions.

A.3 Kronecker Delta – δij

The Kronecker Delta is defined as follows,

δij =

{

1 if i = j
0 if i 6= j

.

An important property of δij is index substitution,

aiδij = aj.

Proof (for n = 3):

aiδij = a1δ1j + a2δ2j + a3δ3j =

a1 if j = 1
a2 if j = 2
a3 if j = 3

= aj, qed.

29

Examples:

1. aijδij = aii = ajj = a11 + a22 + a33

2. ei · ej = δij, if e1, e2 and e3 are unit vectors perpendicular to each other.

3. Scalar product: a · b = (aiei) · (bjej) = aibj(ei · ej) = aibjδij = aibi

4. Vector magnitude: |a| =
√

a · a =
√
aiai

A.4 Permutation Symbol – eijk

The Permutation Symbol is defined as follows,

eijk =

1 if i, j, k form an even permutation of 1, 2, 3
−1 if i, j, k form an odd permutation of 1, 2, 3
0 if i, j, k do not form a permutation of 1, 2, 3

.

Thus,

e123 = e231 = e312 = 1

e321 = e132 = e213 = −1

e111 = e112 = e113 = . . . = 0.

Examples:

1. Show eijkδij = 0.

Proof: eijkδij = eiik = 0, qed.

2. For a right-handed triad e1, e2 and e3, we have e1 × e2 = e3,

e2 × e3 = e1, etc.

⇒ In indicial notation, ei × ej = eijkek

3. Vector product: a × b = (aiei) × (bjej) = aibj(ei × ej) = eijkaibjek

4. e-δ Identity: eijmeklm = δikδjl − δilδjk

A.5 Differential Operators

Differentiation with respect to the cartesian coordinates xi is indicated by a comma symbol

in indicial notation. For example,

Gradient

∇S =
∂S

∂xi

= S,i

30

Divergence

∇ ·V =
∂V1

∂x1
+
∂V2

∂x2
+
∂V3

∂x3
=
∂Vi

∂xi

= Vi,i

Laplacian

∇2S =
∂2S

∂x2
1

+
∂2S

∂x2
2

+
∂2S

∂x2
3

=
∂2S

∂xi∂xi

= S,ii

31

References

[1] Modulef. A free, modular finite element library. Available at http://www-

rocq.inria.fr/modulef/english.html.

[2] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods:

An overview and recent developments. Computer Methods in Applied Mechanics and

Engineering, 139:3–47, 1996.

[3] S.N. Atluri and Tulong Zhu. New concepts in meshless methods. Int. J. Num. Meth.

Engng., 47:537–556, 2000.

[4] Abaqus Theory Manual Version 5.7. HKS Inc., Pawtucket, Rhode Island, 1997.

[5] R.D. Cook and W.C. Young. Advanced Mechanics of Materials. Prentice Hall, Upper

Saddle River, New Jersey, 2nd edition, 1999.

[6] Jacob Lubliner. Plasticity Theory. MacMillan, New York, 1990.

[7] J.N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill, New York,

2nd edition, 1993.

[8] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume I. McGraw-Hill,

London, 4th edition, 1989.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in FORTRAN: The Art of Scientific Computing. Cambridge University Press, 2nd

edition, 1992.

[10] Linpack. A collection of linear algebra subroutines in FORTRAN. Available at

http://www.netlib.org/linpack/.

[11] Lai WM, Rubin D, Krempl E. Introduction to Continuum Mechanics. Oxford: Perga-

mon, 1993.

32

