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ABSTRACT

We develop a method which permits the analysis of problems requiring the
simultaneous resolution of continuum and atomistic length ‘scales—and
associated deformation processés—in a unified manner. A finite element
methodology furnishes a continuum statement of the problem of inferest and
provides the requisite multiple-scale analysis capability by adaptively refining
the mesh near lattice defects and other highly energetic regions. The method
differs from conventional finite element analyses in that interatomic
interactions are incorporated into the model through a crystal calculation
based on the local state of deformation. This procedure endows the model with
crucial properties, such as slip invariance, which enable the emergence of
dislocations and other lattice defects. We assess the accuracy of the theory in
the atomistic limit by way of three examples: a stacking fault on the (111)
plane, and edge dislocations residing on (111) and (100) planes of an
aluminium single crystal. The method correctly predicts the splitting of the
(111) edge dislocation into Shockley partials. The computed separation of these
partials 18 consistent with results obtained by direct atomistic simulations. The
method predicts no splitting of the Al Lomer dislocation, in keeping with
observation and the results of direct atomistic simulation. In both cases, the
core structures are found to be in good agreement with direct lattice statics
calculations, which attests to the accuracy of the method at the atomistic scale.

§ 1. INTRODUCTION - '

The analysis of the structure of crystal defects such as dislocations and grain
boundaries requires consideration of anharmonic effects on the scale of the lattice.
Lattice statics and molecular dynamics based on interatomic interactions provide a
powerful and accurate tool of analysis on this scale. Recent examples of application
of these techniques may be found in the work of Gallego and Ortiz (1993), Mills,
Daw and Foiles (1994), Sutton and Pethica (1990) and Arias and Joannopoulos
(1994). Atomistic analyses have provided useful insights into phenomena controlled
by discrete lattice effects {see, e.g., Christian (1983) for a review). At the other end of
the spectrum, the macroscopic deformation behaviour of crystals may involve dis-
location densities as high as 10> m™2. An area of 1 mm>, e.g., near the tip of a crack,
may be crossed by as many as 10° dislocations. This precludes consideration of
individual dislocations at the macroscopic scale, and has spurred the development
of constitutive models which treat dislocations and other defects as continuously
distributed objects (see, e.g., Cuitifio and Ortiz (1992) for a review).

An intermediate scale, of the order of a few hundred nanometres, is presently
emerging as the focus of increasing attention in applications such as nanoindentation
(Pharr, Oliver and Clarke 1990, Harvey, Huang, Venkataraman and Gerberich 1993)
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and the investigation of the brittle/ductile transition in high purity materials (Chiao
and Clarke 1989, Brede 1993). This scale is presently beyond the reach of conven-
tional atomistic and continuum methods alike. Thus, the number of atoms involved
in these simulations is often in excess of 10%, which rules out purely atomistic models.
However, the deformation processes of interest involve discrete dislocations in num-
ber which are too small to be described adequately by macroscopic crystal plasticity
models. This is the scale preferentially addressed in the present work.

We aim for one theory with the following attributes. At the macroscale, the
theory should reduce to continuum crystal elasticity, with its usual properties of
material frame indifference and crystal symmetry (Gurtin 1981, Milstein 1982). At
the microscale, the theory should be built upon reliable interatomic interactions,
incorporate a lattice parameter and possess all the lattice invariance properties
expected of a crystal lattice. We note that the incorporation of the lattice parameter
as an intrinsic length necessarily renders the theory non-local. Of particular concern
is that the theory enables an accurate treatment of lattice defects such as dislocations,
should these defects arise. At intermediate length scales, or mesoscales, the theory
should exhibit a continuous or seamless transition from the lattice to the continuum
realms. In particular, we rule out the patching of lattice and continuum models, as
has been common practice in the past (Kohlhoff, Gumbsch and Fischmeister 1991).

This paper is devoted to the development of a quasicontinuum theory of the type
Just described. Viewed from a continuum perspective, the theory is predicated on the
use of atomistic potentials to describe the constitutive response of the crystal. The
atoms are constrained to move in accordance with the continuum displacement field,
which enables the computation of energies and forces from local lattice calculations.
By this construction, the resulting continuum automatically satisfies material frame
indifference and exhibits all the symmetries of the crystal. It also possesses lattice
invariance, i.e., its energy is invariant with respect to distortions of the reference
configuration which bring the lattice into coincidence with itself. In particular, the
‘energy density is periodic under crystallographic slip. A far-reaching consequence of
this periodicity is the lack of quasiconvexity of the energy functional (Chipot and
Kinderlehrer 1988, Fonseca 1988), which opens the way for lattice defects such. as
dislocations to develop stably. The relaxation of functionals lacking quasiconvexity
requires consideration of minimizing sequences of deformations which exhibit struc-
ture on increasingly finer scales (Ball and James 1987, Dacorogna 1989). From a
computational standpoint, this necessitates multiple-scale analysis capability
enabling the simultaneous resolution of macroscopic and microscopic features in
the solution.

In our approach, the scales of interest are resolved by recourse to adapative
meshing: we refine the mesh near regions of highly non-uniform deformation such
as dislocation cores and crystal boundaries, while discretizing regions of slowly
varying deformation coarsely. In this manner, a significant reduction in the number
of degrees of freedom is achieved relative to purely atomistic methods, without
relinquishing full atomistic resolution where needed. To prevent the displacement
field from developing unphysical sublattice-scale structure, the lattice parameter is
taken to set a lower bound for the mesh size. This physical bound is enforced by
checking the process of mesh refinement when elements attain dimensions commen-
surate with the lattice parameter. The crystal thereby takes on a character similar to
Kunin’s quasicontinua (Kunin 1982), and we name the theory accordingly.
However, it should be noted that Kunin’s quasicontinuum is obtained by restricting
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the Fourier transform of the displacement field to the first Brillouin zone of the
crystal. This is in contrast to our theory, which employs a cut-off length in real space.

The elements in the model behave locally or non-locally depending on their size,
extent of deformation and energy: small, highly deformed and highly energetic ele-

ments are treated non-locally, while all other elements are treated locally. A local
~ element ‘sees’ the state of deformation within its domain only, while non-local ele-
ments see the deformation of neighbouring elements as well. The non-local treatment
of elements lying in the vicinity of slip planes and crystal boundaries is required for
the model to properly account for surface and stacking-fault energies. In the coarse
mesh-size limit, the crystal becomes indistinguishable from a nonlinear elastic crystal
obeying the Cauchy-Born rule (Milstein 1982). In the fine-mesh limit, the theory
reverts to lattice statics. Consequently, from an atomistic perspective our quasicon-
tinua may simply be regarded as atomistic lattices subjected to kinematic constraints,
namely, those introduced by the finite element interpolation. These constraints have
the desirable effect of eliminating excess atomistic degrees of freedom in regions
where the deformation field varies slowly on the scale of the lattice.

The structure of the paper is as follows. The quasicontinuum formulation of the
general boundary value problem is developed in §2. There the conventional finite
element formulation is contrasted with the present approach with particular empha-
sis on the way in which constitutive phenomenology results from atomistic calcula-
tions. A range of issues such as the non-local aspects of the theory and algorithms for
solving the resulting boundary value problems are also discussed. The analyses of
three types of dislocations in aluminium collected in § 3 serve as stringent tests of the
ability of the theory to account for lattice defects accurately. Closing remarks on the
relative merits and future prospects of the theory are given in §4.

§ 2. THE QUASICONTINUUM FORMULATION

2.1. Overview A -

In continuum mechanics, solids are modelled as continuous media with appro-
priate average material properties. Each local neighbourhood of the solid may be
regarded as a continuum particle (Weiner 1983), representative of a large region on
the microscale. At this level of description, the energy of the solid is an extensive
property, and follows locally from the deformation of each continuum particle. This
requires the size of the continuum particles to be small relative to the distance over
which the continuum fields are allowed to vary appreciably. The constitutive theory
appropriate to each case also varies in accordance with the coarseness of the descrip-
tion. By contradistinction, atomistic theories regard solids as collections of atoms
whose interaction is modelled by an appropriate energy function. By recourse to this
atomistic ‘microscope’, it is possible to obtain a great deal of detail at the scale of the
crystal lattice. However, present computer hardware places stringent limits on the
number of atoms which can be included in atomistic models especially if, as envi-
sioned here, the crystal lattice contains defects. Perhaps a more fundamental objec-
tion to large-scale atomistic simulations is that, frequently, the vast preponderance
of the lattice deforms smoothly and closely obeys continuum elasticity. Under such
conditions, it may be unnecessary and unduly wasteful to account for every atom in
the lattice. . ‘

The quasicontinuum (QC) theory developed here marries these two contrasting
views, thus enabling a seamless description of solids exhibiting structure on atomistic



1532 ' E. B. Tadmor et al.

and continuum scales. The continuum framework and continuum particle concept
are retained, but the macroscopic constitutive law is replaced by one based upon
direct atomistic calculations (see fig. 1). The continuum particle is identified with a
small crystallite of radius R, surrounding a representative atom. This crystallite,
which constitutes a true collection of atoms, is distorted according to the local
continuum displacement field. The energy of the crystallite is computed from an
appropriate atomistic model. Since the energy of each point is obtained directly
from atomistics, key properties of the crystal, such as crystal symmetries and slip
invariance, are automatically introduced into the description. The continuum dis-
placement fields are parametrized by the finite element method (FEM). As is stan-
dard in the FEM, the solid is partitioned into a finite number of regions, or
‘elements’. The deformation within each element is interpolated from the corre-
sponding nodal displacements, which thus become the sole unknowns of the
problem. In the quasistatic case, the energy is computed as the sum of the energies
of the representative crystallites and the finite element solution follows by energy
minimization. B ‘

In order to compute energies, the deformation of the crystallite and the conti-
nuum displacement field need to be placed in correspondence. A standard approach
often followed in molecular theories of crystal elasticity is the Cauchy-Born rule
(Milstein 1982, Ericksen 1984) where the atomic positions are related to the con-
tinuum fields through the local deformation gradient F. The deformed crystal struc-
ture is obtained by applying F to the undeformed crystal lattice basis and then
reconstructing -the crystal from the altered base vectors (see fig. 2). In this manner
each continuum particle is represented by an infinite crystal undergoing homoge-
neous deformation. In the context of our quasicontinuum theory, we shall refer to
this limit as the local QC formulation.

Although it is elegant and straightforward to implement, the local formulation
suffers from several drawbacks that make it necessary to expand the formulation to
deal with non-local effects. The primary difficulty is that due to the homogeneous
nature of the deformation in the local formulation, it becomes impossible to model
important inhomogeneous structural features such as stacking faults.

Real stacking faults correspond to two undistorted crystalline half spaces slip-
ping over each other by a non-lattice translation vector, and are therefore non-uni-
form. Within the local QC framework such structures can only be modelled via a
simple shear deformation, which except for the two atomic layers directly adjacent to
the slip plane, results in a completely different structure than is found in a real
stacking fault. The stacking fault energy plays a crucial role in many crystalline
processes and when computed in the local formulation leads to a spurious result.
This is demonstrated in fig. 3, where a fcc stacking fault is presented. In (a), the
correct stacking fault structure is represented, where we see the top half-plane has
slipped over the bottom plane in the [121] direction, creating an intrinsic stacking
fault ABCA|CABC. Frame (b) shows the simple shear version of (a) and it is seen
that the crystal has been transformed to its twin variant (i.e. ABCABC ... stacking is
transformed to CBACBA...) which is energetically degenerate with the original
structure. Thus, for a fcc crystal the local QC formulation predicts zero stacking
fault energy.

Other difficulties associated with purely local formulations are that crystals
modelled in this fashion do not have a well-defined Peierls stress and do not allow
for interface defects such as free surfaces, grain boundaries or other heterogeneous
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Fig. 1 -
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REPRESENTATIVE ATOM ®)

Schematic of the quasicontinuum concept. (a) Every point in the continuum is modelled by a
representative atom (black) embedded in a crystallite of radius R.. (b)) FEM discreti-

zation of the solid in (a), showing element, underlying crystal lattice and representative
atom. :
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Fig. 2

The Cauchy-Born rule: an undistorted lattice with lattice vectors A; is mapped to the
deformed configuration by application of the local deformation gradient F.
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Stacking fault in a fcc crystal (atom shading indicates different out-of-plane postions). ()
Actual fcc stacking fault structure, (b) atomic positions implied by a simple shear
model of the SF. )
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interfaces. Furthermore, the lattice parameter which serves as the crystal’s intrinsic
length scale is lost in the Cauchy-Born process allowing the energy minimization
routines to develop structure on sublattice length scales, a clearly unphysical situa-
tion. These deficiencies become critical near defect cores, further emphasizing the
need to expand the formulation to deal with non-local effects.

In the non-local QC formulation each atom within the representative crystallite
is displaced according to the actual continuum displacement field at its position. This
implies that the position of the atom R, after deformation is given by
r, = R, + u(R,), where u is the continuum displacement field. The local and non-
local formulations are equivalent as long as the element is sufficiently large as to
entirely contain the representative crystallite centred about its quadrature point (see
fig. 4); however, as the elements become smaller than R., members of the represen-
tative crystallite will fall inside different elements and experience a non-uniform
displacement field (see fig. 5). In this manner the modelling of stacking faults
becomes straightforward. The use of non-local elements near the stacking fault
plane captures the true non-uniform deformation and as a consequence returns
the correct associated energy. o

The non-local formulation also extends the method so that problems such as
those involving free surfaces, grain boundaries and other interfaces can be treated as
well. Elements smaller than the representative crystallite radius R, placed near such
an interface will, because of non-locality, have representative atoms that experience
either undercoordination, such as at a free surface, or will include atoms of different
species such as at a bi-material interface, or include atoms arranged in a different
crystal orientation for a grain boundary (see fig. 6). If we choose not to include the
interfacial effects we simply constrain the size of the elements near the interface to be
larger than R;. This feature becomes very useful when, for example, we wish to
model an effect far from the crystal surface (such as a dislocation in an infinite
crystal) and do not wish the solution to be contaminated by surface effects.

In general, then, the mesh is primarily composed of local elements away from
defects and other severe non-uniformities with non-local elements introduced as

Fig. 4

Representative Atom

Local QC/FEM element (small black circles at triangle corners represent nodes, larger circles
within the dashed perimeter are atoms belonging to the representative crystallite).
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Non-local QC/FEM element (solid triangle) surrounded by nearby elements (dashed
triangles)-—symbols have same meaning as in previous figure.
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Interfacial effects captured by a non-local element placed near (a) a free surface, (b) a bi-
material interface and (c) a grain boundary.
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necessary to capture these effects. A criterion for automatic selection of the local
against non-local status of each element is presented in §2.6.

One result of the introduction of non-local elements into a local QC/FEM mesh
is the loss of centrosymmetry at non-local element nodes. Except for the special case
of a uniform mesh, non-local nodes within the mesh are not surrounded by a sym-
metric distribution of representative atoms. As a result, the out-of-balance force
residual is non-zero for the undistorted mesh, implying an equilibrium energy
lower than the perfect crystal cohesive energy. Similar effects have been observed
by Bassani, Vitek and Albert (1992) in their investigation of atomic-level elastic
properties of interfaces. Relaxation of the spurious non-zero forces reveals the over-
all effect to be negligible. For example, in models of dislocations in Al, the maximum
atomic displacements observed after relaxation of these forces were less than 0-1 A
and the reduction in energy was of the order of 10> eV atom" (this should be
contrasted with typical atomic relaxation energies of 0-1 eV atom™ 1. A further exam-
ple of non-centrosymmetric effects is given in §3.2 where the QC solution for a
Lomer dlslocatlon 15 presented.

2.2. Constitutive models

The formulation of reliable constitutive relations is an area of interest to
mechanics and materials science alike. The traditional finite element. approach has
been to postulate a constitutive relation thought to be appropriate for the problem of
interest. Our approach differs in that it appeals to the microscopic underpinnings to
yield a model for the mechanical response of a material. The use of atomistically
derived constitutive relations has the immediate effect of lending our model all
relevant crystal symmetries. Thus no presuppositions on crystal behaviour have to
be made at the constitutive level and the crystal is free to assume any configuration
dictated by equilibrium. Most important of the symmetry properties implied by
adopting this approach is slip-invariance, which refers to the fact that the energy
of the solid is invariant under crystallographic slip. Slip invariance in the continuum
is described by the one-parameter family of deformation mappings

H(y) =1+ ys®n, - (1)

where n is the normal to the slip plane, s is a vector in the slip dlrectlon «y is the slip
strain and | is the identity matrix. By lattice invariance, the energy density W(vy) is
periodic in v with period b/d, where b = |b| is the magnitude of the translation
vector and d is the distance between adjacent crystallographic planes perpendicular
ton. This effect can be seen in fig. 7 where the dependence of energy density on the
slip and the associated crystal structures are presented. In the figure, A corresponds
to a perfect undistorted crystal, B corresponds to a metastable state where the force
is zero but the energy is maximal and in C the perfect crystal structure is restored. In
the wake of a dislocation we expect the atoms on the slip plane to occupy energy
wells that correspond to position C, indicating the vital role of slip invariance in
allowing for the presence of dislocations and other stable defects in the crystal.
Our basic approach is independent of the choice of any particular atomistic
scheme for computing the energy at the atomistic scale. The basis of our calculations
is illustrated schematically in fig. 1(b). A global origin in the undeformed configura-
tion relating the continuum finite element model to the underlying crystal structure is
set. Then for every quadrature point in the FEM mesh (where the continuum fields
are sampled for numerical integration) the nearest atom is selected as a representa-
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Fig. 7

Energy

T T

Invariance of strain energy under shear as obtained from microscopically derived constitutive
: model.

tive atom. We then deform a small neighbourhood around that atom either accord-
ing to the local deformation gradient tensor F if the element is deemed local (see
§2.4) or based on the actual displacement of every atom according to the global
continuum displacement fields if the non-local formulation is used (see § 2.5). We can
then compute the total energy of the representative atom using an appropriate
atomistic model, and return to the FEM model the energy and its derivatives at
the quadrature point. By refining the mesh and using the non-local model in highly
strained regions, non-linear core effects will be picked up, while in less strained
regions far from the core the local approximation will yield linear elastic behaviour.

Recent advances in the microscopic modelling of materials have resulted in a
range of methods for computing the total energy of an assembly of atoms; methods
ranging from pair potentials to the most sophisticated quantum mechanical calcula-
tions using density functional theory. In the end, each method involves compromises.
Simple methods such as pair potentials, while fast and hence applicable to large
systems, lack the accuracy and transferability to make them a viable candidate for
quantitative analysis. On the other hand, density functional techniques, while highly
accurate, are limited to the treatment of at most hundreds of atoms, leaving analysis
of extended defects in complex environments still out of reach. In principle, any of
these methods is applicable to our implementation of the quasicontinuum method.

For the purposes of illustration, we have implemented the embedded-atom
method (EAM) (Daw and Baskes 1983) to yield total energies for the system of
interest. In the EAM, the total energy of a crystal is given in terms of an embedding
energy accounting for the interaction between the nuclei and surrounding electron
gas, and a second term accounting for the self-interaction of the nuclei. In this
context the strain energy density W is given by

W= Il/ Z[Ui(pi) + @, (2)

where i runs over all atoms in the crystal, ¥ is the total volume of the crystal, p; is the
ambient electron density at atom i, U; is the energy required to embed atom i into
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electron density p;, and &; is the total interaction energy of atom i with all
neighbouring nuclei. This last term, which accounts for the short-range core—core
repulsion is modelled as a pairwise interaction over all nuclei

Z (), (3)

J(#t

where i and j run over all atoms in the crystal, ¢ is a pairwise interaction potential
between atoms 7 and j, and r; is the distance between atoms i and j

ry = |r;—r, 7 : (4)

where r; and r; are the position vectors of atoms i and j, respectively. The electron
density at atom i is approximated as the superposition of the electron densities due to
the surrounding atoms at the location of atom i

pi= D _firy), - (5)
JGEE)
where f; is the electron density generated by atom j at a distance r; ‘from its core.
We have examined a range of different embedded-atom functlons but for the
purposes of this paper have settled on the recently developed functions of Ercolessi
and Adams (1993). A notorious flaw of embedded-atom type models has been their
severe underestimate of stacking fault energies—a shortcoming that hampers their
capacity to model dislocations. Through fitting ab-initio calculations for a range of
material properties, the Ercolessi—Adams potentials have a substantially larger
intrinsic stacking fault energy than competing EAM potentials for Al’ As a result,
significant improvements have been found in the dislocation core structures pre-
dicted by this method (Mills ez al. 1994). It should be emphasized, however, that
while we have chosen the embedded-atom method for the purposes of the present
calculations, our use of atomistics to determine constitutive relations is not tied to
any particular choice of atomistic calculations.

2.3. Field equations and spatial discretization

Consider a crystal occupying a reference configuration By in R>, which is referred
to a material Cartesian frame {X;, /= 1,2,3}. The crystal undergoes a motion
described by a deformation mapping ¢(X, ). The image of By by (-, 1) defines
the deformed configuration B, of the crystal at time ¢, which is referred to a spatial
Cartesian frame {x;,i = 1,2,3}. The deformation at time ¢ of an infinitesimal mate-
rial neighbourhood dV about a point X of By is completely defined by the linear
part of ¢(-,¢) at X. This defines an affine mapping

dx; = iJ(Xa [) dX;, ) : (6)

where F;; are the components of the deformation gradient
Fiy(X, 1) = ¢; (X, 1), _ (7)

where upper-case indices refer to the material frame, lower-case indices to the spatial
frame, and (-),; indicates differentiation with respect to X;. In invariant notation,
F = Vy¢, where V; denotes the material gradient operator.

We can now formulate the -general boundary value problem. To this end, we
partition the reference boundary 9By into a Dirichlet, or displacement, component
0By, and a Neumann, or traction, component dBy,. The solid is subjected to pre-
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scribed displacements ¢ on 0By, and to prescribed tractions T on 8By,. In addition,
the solid is acted upon by body forces per unit volume pyB, where p; is the reference
mass density and B is the body force field per unit mass. Stable configurations of the
crystal are identified with the minimizers of the potential energy

) = i‘«lf(Lo WA~ | 8wy - |

By

Twds). @
0By,

where W(\) is the strain energy density computed from some appropriate atomistic
energy function, and the trial deformation mappings s belong to some suitable space
of functions over B, salisfying the essential boundary condition \y = ¢ on 9By,.

Evidently, for small deformations of the crystal, the formulation reduces to
conventional anisotropic elasticity. In this limit, energy minimizers are uniquely
defined up to a rigid body motion. These conditions are commonly realized in
regions of the crystal which are far removed from lattice defects. However, the
fact that the strain energy density W is computed directly from an atomistic potential
implies that it lacks quasiconvexity (Chipot and Kinderlehrer 1988, Fonseca 1988),
which in turn makes it possible for energy minimizers to develop microstructure on a
fine scale, including lattice defects such as dislocations. On this scale, the periodicity
of the lattice, and the resulting periodicity of the energy function with respect to
crystallographic slip, become all-important.

For reasons that will become apparent subsequently, an essential building block
of the present approach is the introduction of a method of spatial discretization well
suited to multiple-scale analysis. In solid mechanics applications, adaptive finite
element methods have proved particularly powerful in this respect. We begin by
partitioning the reference configuration By into finite elements {Q},e=1,..., M},
where M is the number of elements, and /4 denotes a measure of the size of the mesh,
such as the size of the smallest element. The deformation mapping and deformation
gradients are discretized in the usual manner (Hughes 1987), namely

: N
¢h(X7 Z) = Zd)a(t)Na(x)a (9)
a=1
N
Fa(X, 1) = Y ¢a(t)VoNo(X), (10)
: a=1
where a = 1,..., N are the nodes in the mesh, N is the number of nodes, ¢,(¢) are the

nodal coordinates at time ¢, and N,(X) are the interpolation, or ‘shape’, functions.
The primary unknowns of the problem are now the nodal coordinates ¢,(¢). These
follow from the constrained minimization problem

11,4 ()] = igf(j% L OB

h 0By,

OR dso), ()

where the trial functions are of the form

N
\l’h(x) = Z\I’aNa(X)7 (12)
a=1
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and are required to satisfy the essential boundary conditions identically on 0By;. All
integrals in eqn. (11) can be conveniently performed by numerical quadrature at the
element level. For instance, the strain energy is computed as

L W) AV, ~ ZZW WO (E)), (13)

e=1 g=1

to within the accuracy of the numerical quadrature rule. Here, Q is the order of the
quadrature rule, and w; and &, are the quadrature weights and points for element e.
The use of numerical mtegratmn reduces all stress—strain calculations-to the quad-
rature points of the elements. In our simulations, we use linear three-noded trian-
gular elements with a one-point quadrature rule (Hughes 1987) and construct all
meshes by automatic triangulation based on the Delaunay algorithm (Sloan 1987).
The use of linear elements guarantees a smooth transition from non-local to local
elements since the non-local formulation reduces to the local one for large elements
in this case. _ .

To solve the constrained minimization problem in (11) we can use either a
Newton-Raphson (NR) solver with its powerful quadratic convergence properties,
or a conjugate gradient (CG) approach followed by a NR polish when the initial
guess is too far from the solution for NR to initially converge. In both cases we will
requite the first and second variation of the total potential energy IT, with respect to
the nodal degrees of freedom V), referred to in FEM terms as the global out-of-
balance force residual and the global stiffness matrix, respectively. These are com-
puted differently depending on whether the element is local or non-local and are
given in §§2.4 and 2.5.

2.4. Local quasicontinuum

It remains to be shown explicitly how the energy and its variations are computed
at a quadrature point given the continuum deformation fields there. In the local
quasicontinuum formulation, it is imagined that each point in the solid is represented
locally by an infinite crystal subjected to homogeneous deformation. A consequence
of the homogeneity is the loss of the global origin linking the underlying crystal
lattice to the continuum. As a result the choice of representative atom is immaterial
since all atoms are equivalent. We can thus imagine our infinite crystal as surround-
ing a representative atom located at the origin. Followmg the Cauchy-Born approx-
imation (Ericksen 1984), this infinite crystal is deformed according to the local
continuum deformation gradient (see fig. 2). Consequently, if {A,I=1,2,3}isa
crystal basis, then the coordinates of its atoms are

X(m) =mA;, meZ, . (14)

where Z is the set of integers. The positions of the atoms in the deformed config-
uration are then taken to be

x(m) =FX(m), me Z’, (15)

where F is the local deformation gradient which is constant within the element. In
practice a region of radius R, (taken to be about twice the potential cutoff radius re)
1s stored to represent the infinite crystal (see fig. 4). We must then ensure that the
applied trial deformation F is not so severe as to bring atoms from outside the region
R, to within the cutoff radius r, of the representative atom.
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To account for this we introduce the concept of an influence radius associated
with deformation F. This radius corresponds to the most distant point in the
undeformed configuration that is mapped into the representative atom’s cut-off
sphere in the deformed configuration. This restriction can be neatly expressed as
an eigenvalue problem, which leads to the following result:

Rinf = rc\//lmaxa (16)

where R, is the influence radius and A,,,, is the maximum eigenvalue of F TF~!. We
thus require every trial deformation during the minimization process to satisfy
Rir < R, otherwise the deformation is rejected as overly severe. Failure to account
for this effect can result:in erratic behaviour during the bracketing and line search
phases of the CG minimization (Press et al. 1992).

Once the trial deformation has been accepted, the strain energy density W fol-
lows as a function of F and can be computed using the underlying atomistic method.
The local contributions to the out-of-balance force res1dual and global stiffness
matrix follow as

oIl local —
h:ZJ (P.VONa)dVO—J pOBNadVO—J TN dSe,  (17)
h By

. N, - 0By,
local ‘
=3 | 1€ (Vo Vo] 4, (18)

where a and b are node numbers, P = 9W/OF is the first Piola-Kirchhoff stress
tensor and C = 8*W/9F* is the Lagrangian tangent stiffness tensor. These quantities
are the finite deformation analogs of the Cauchy stress and elastic modulus tensors
familiar from linear elasticity. Note that in the first term of eqn. (17) and in eqn (18) e
is only summed over local elements in By. Explicitly in indicial notation the above
expressions can be rewritten as

o HI local B
=2y JQZ PN,y dVy LO po BN, AV, LBM TN, ds,  (19)
32 Hh local J
TAE = [Cirir Na,gNp 1] dV, (20)
&pa&bllj .Z: 2 l ‘
and P, and C,y; are related to strain energy density through
' oW
= 21
Fw
Cikl, === 22
iWJkL aFl_]aFkL ( )

These Lagrangian measures can be related to their spatial counterparts, the
Kirchhoff stress t and the spatial moduli ¢ through the standard derivation
(Marsden and Hughes 1983)

Py = 1,Fy, (23)
Cinr = (cya + Sumi) Fyj Frf | (24)
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where 6, is the Kronecker delta. For the 3-noded linear element scheme adopted in
this work, F is constant within each element; thus the integrations above amount to
evaluating the integrand for the deformation gradient F within that element and
multiplying by the element area. -

So far our treatment has been totally general and applicable regardless of choice
of underlying atomistic methodology. The appropriate relations for an EAM
formulation are given below. In the previous discussion the EAM expressions
(2)-(5) were given for an arbitrary collection of atoms and the energy computed
by summation over all atoms. For a pure infinite crystal subjected to homogeneous
deformation, translational invariance reduces the general expressions to considera-
tion of a single atom and all neighbours within a prespecified cut-off radius r.. Thus
eqns. (3) and (5) may be rewritten as

1 ' ’
=33 80™), o (25)
p= Zf(l‘m), ' (26)
m
where the indices m = (m;,m,, m;) are summed over all atoms within the cut-off

sphere of the representative atom after deformation, ¢(r) is the interaction pair
potential, f(r) is the electron densxty function, and

= |x(m)]. | (27)

The strain energy density of an infinite crystal undergoing homogeneous deforma-
tion is

W= U 1 9, | (28)

where Q is the unit cell volume.

Given the form of the total energy of the crystal (eqn. (28)), the local stresses and
tangential elastic moduli can be derived at every point within the crystal.
Differentiating eqn. (28) with respect to the deformation gradient components, we
obtain the components of the first Piola—Kirchhoff stress tensor (eqn. (21))

1 -, Op 0P i 4
Py=—|U(p) =—+—— : - (29
1=g |Vl )aF,J+aF,J (29)
These derivatives may be evaluated through use of eqns (25) and (26) and by exploit-
ing the identity

m m_m )
or o

6F,;J rm 7o

(30)

where
= x;(m). . (31)

As a result, it is found that

Rt i

The Kirchhoff stress 7; follows by eqn. (23) as
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=g { [verem o] S 3

We now turn to the Lagrangian tangential moduli defined in eqn. (22). Making
use of eqns (25) and (26) as before we have

Cinr =5 { U"(p) Zf (" Zﬂ BF fel.
+) [(.U’(P)f )+ §¢//(rm)) glr”u ;;kL o

Ho@rem +Loom) 2
p 2 OF 0F |
The partial derivatives appearing in eqn. (34) are geometrical identities and are given

in eqn. (30) and below,

8 —
OF;;0F (rm)? b

(35)

The spatial moduli are then obtained by recalling eqn. (24),

et

+z[((mp>f«rm>+5¢~<rm>)~;£—(U'<ﬂ>f<rm>+%¢'<r“>)) e
Nty Feti

el

Note that the Kronecker delta term appearing in eqn. (35) drops out due to the
presence of the stress term in eqn. (24).

For a purely local formulation the above expressions represent a complete con-
stitutive description of the problem. However, as explained earlier, a purely local
formulation is unable to capture non-uniform effects such as stacking faults, inter-
faces and free surfaces. The non-local formulation is developed below.

rkrl

mmmm

- 2.5. Non-local quasicontinuum

In the non-local formulation each quadrature point is represented by a single
atom whose neighbours are displaced in accordance with the continuum displace-
ment fields (see fig. 5). Due to the inhomogeneous nature of the non-local formula-
tion the global lattice origin is retained and we must explicitly account for the
position of the atoms in the representative crystallite in relation to the continuum
mesh. We thus introduce R® as the global cartesian coordinates of the representative
atom of element e and write the positions of the atoms belonging to its representative
crystallite as

X‘(m) =R+ mA;,, meZ’. : (37)
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In this way the Bravais lattice is tied to the mesh, and a one-to-one relationship
between the atomic sites and continuum fields is obtained. The deformed atomic
positions are obtained by interpolation from the FEM mesh,

X (m) = X*(m) + P, N, (X (m)). (38)

In the non-local case, due to the absence of a uniform strain field, it is not possible to
define general measures of stress and stiffness as in the local case. As a result, the
out-of-balance force residual and global stiffness must be written directly in terms of
the EAM sums. The non- local contribution to the out-of-balance force residual
follows as

e

%::norimcal{QZKU( ) (re) + )) Z;Q]QZ}, (39)

where e is only summed over non-local elements in By, Q; is the area of element e,
and the electron density at the representative atom of element e, p,, is given by

= > A, o (40)

where

re. = [x*(m) — x*(0)},
= s+ Wy (No(XE(m)) — N, (RF))|.

The partial derivative appearing in eqn. (39) is a geometric identity ai;d is given by

Z;': (No(XE(m)) — N,(R%) (”e) @

(41)

where
(r"), = xi(m) — x{(0). | | (43)

Note that for FEM meshes containing both local and non-local elements, the total
out-of-balance force residual 9IT, /0y, will be assembled from both eqns (19) and
(39) as a superposition of both vectors. The non-local contrlbutlon to the global
stiffness matrix can similarly be obtamed =

82 non—local 1
h. Z // ,0
Lo, Q { ’

e

Ty !Zf ( &ﬂj

/ ), m — " (™ aré Bre _
+ 2| (o +50 <E))8¢;M_ (44)
! m l 1/ m 62an V
T (U (e () + 567 )) M%] }
where eqn. (42) is used in addition to identity '
2m ’--r"'z—r‘.“ ;o
TTe (N, (X (m)) — No(RE)) (N, (X () — vy (RE)) ) = UDel)e )

&paaw,, (rmy’

Again, meshes containing both local and non-local elements yield a final stiffness
matrix that is obtained by superposition of both eqns (20) and (44). The inclusion of
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non-local elements near highly deformed regions such as defect cores, stacking faults,
and free surfaces completes the QC formulation.

2.6. Non-locality criterion

As explained above, one of the key ingredients in the QC formulation is the
placement of non-local elements in highly deformed regions. In this section we
introduce a criterion for determining the local vs. non-local status of each element
in the mesh. A natural choice suggested by figs 4 and 5 is a size-dependent criterion;
elements larger than the local crystallite radius R, could be computed locally, while
smaller elements could receive non-local treatment. While this criterion makes sound
physical sense and leads to excellent solutions, it proves to be wasteful frorn a
computational point of view.

The non-local capabilities of the QC formulation are only needed close to defect
cores and along slip planes where stacking faults develop. Once away from these
highly non-homogeneous regions the local formulation (which is less computation-
ally intensive and more stable) performs remarkably well. Therefore it is of interest
to develop a criterion capable of identifying regions undergoing large non-homo-
geneous deformation.

The criterion used in subsequent sections is based on the second invariant of the
Lagrangian strain tensor E

Iz =1[E:E - (tE)?],

= E% + E33 + E3 — (Ey Ey + ExyEss + EqE33) (46)
= L2 13 23 11422 224433 11433/,

where
E=L1F"F-I). (47)

According to our criterion, an element is given non-local status when

Vg > e, (48)

where €, is some critical strain appropriate to the material and problem. In addition
to the elements that satisfy condition (48) outright, we also demand that elements in
their immediate vicinity that share atoms with those elements determined to be non-
local by the strain criterion be treated as non-local as well. These additional elements
are referred to as non-local by proximity.

This leaves one further consideration. Consider, for example, a model containing
a dislocation as in fig. 8 (only elements along the slip plane have been indicated in the
figure). Elements far to the right of the dislocation core will be undistorted, while
elements far to the left experience perfect Burgers vector slip. In both cases these are
zero energy modes corresponding to a perfect undistorted crystal and can be treated
using local elements. However, with the purely kinematical criterion (48) introduced
so far, the elements on the far left of the slip plane are identified as non-local.

As a result, a more stringent non-locality criterion is added to the kinematic
criterion described above, namely in addition to being highly strained the deforma-
tion within the element should imply a non-zero strain energy

Wi > W, (49)

where Wy, is some small number. To summarize, the procedure for determining the
status of all elements in the mesh is as follows:
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' Fig. 8

Slip plane elements near a dislocation core.

(i) Compute the Lagrangian strain tensor for all elements in the mesh.

(i) Check condition (48) for all elements smaller than Rc, 1dent1fy1ng non-
locally strained elements.

(iii) Compute the energy of elements identified in (ii) using the non-local for-
mulation of the model, and retain those elements satisfying eqn. (49) as non-
local.

(iv) Locate elements that are non-local by proximity by 1dent1fy1ng all elements
smaller than R, that are within R, of an element sat1sfy1ng both eqns (48)
and (49).

(v) In addition, all surface and interfacial elements are computed non-locally.

This procedure is carried out at the start of each iteration and is integrated into
the solution process so that no computation time is lost. An important caveat
regarding this algorithm is that to ensure convergence once an element s labelled
as non-local it must remain so from that point on even if in future iterations it no
longer satisfies the non-locality criterion or is no longer in proximity to a non-local
clement. As an example, fig. 9 presents a colour-coded plot of the elements near the
core of a dislocation. The red elements near the centre are those satisfying both parts
of the non-locality criterion and are thus fully non-local. The dark blue elements
along the slip plane only satisfy eqn. (48) and are thus kinematically non-local. These
elements are computed using the non-local scheme but do not trigger additional non-
local elements in their vicinity. The green elements are non-local by proximity to the
fully non-local elements, and the yellow elements in the rest of the model are local. In
this manner the important nonlinear effects near the core are captured while the rest
of the model is treated using the local algorithm.

§ 3. SOME TEST CASES: DISLOCATIONS IN FCC CRYSTALS
It is instructive to probe the limiting behaviour of the theory on the atomistic
scale. Here the question is whether the theory can stably support lattice defects such
as dislocations and, if so, how similar are their core structures to those predicted by a
full atomistic simulation. Three fcc configurations were investigated: stacking faults
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Fig. 9
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Local against non-local status of elements near a dislocation core (red, fully non-local; blue,
kinematically non-local; green, non-local by proximity; yellow, local).

within the (111) plane, the Lomer edge dislocation (001)[110] and the primary fcc
edge dislocation (111)[110]. In all cases the method was shown to be in very good
agreement with the lattice statics results under conditions in which the same poten-
tials were used in addition to equivalent boundary conditions. In the following
examples the constitutive behaviour of the crystal is modelled using the EAM poten-
tials for aluminium due to Ercolessi and Adams (1993) with a cut-off radius () of
5-56 A. The lattice parameter (q) is 4-032 A. We chose a representative crystallite
radius (R.) of 9- 87 A which for the perfect fcc lattice corresponds to 12 neighbour
shells containing 249 atoms. The critical non-local strain (e) used in the non-
locality criterion is 10% and the zero energy tolerance (W) is 10 3eVA~3,

1. Stacking faults
An important feature of the QC/FEM formulation is its capacity to model the
type of stacking faults (SFs) that often arise in crystalline deformation processes. In
fecc crystals, stacking faults are known to form on the dominant {111}{110} slip
system, for example, as a result of dissociation of a perfect edge dislocation into
two Shockley partial dislocations via the reaction

1[110] — 4 [211] + [121]. (50)

The two partials can then drift apart leaving a stacking fault ribbon between them.
Due to the imperfect stacking sequence in this ribbon there is an energy penalty
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associated with its presence (i.e. the SF energy), which acts to limit the indefinite drift
of the partials (this will be investigated more thoroughly in §3.3). The expected
out-of-plane displacement jump across the stacking fault plane is V6ay/12. For
aluminium this is 0-823 A.

We begin by computing the SF energy directly from a latt1ce statics (LS) com-
putation. The unrelaxed SF energy resulting from the use of the Ercolessi-Adams
potentials is 7-530 meV A2 From the LS computation it is found that the atoms on
each of the four (111) planes adjacent to the slip plane (two above and two below)
contribute equally to the SF energy. This information is instructive in the construuc-
tion of the FEM mesh. On relaxation, the SF energy is reduced to about 6-5meV A2
(Ercolessi and Admas 1993). This value compares reasonably with the observed
experimental values for aluminium of 7-5-9meV A~2.

We now turn to the QC/FEM solution for the SF problem. Two different ana-
lyses were carried out. In the first the FEM model was created in the plane contain-
ing the stacking fault. The x direction was taken to coincide with the Shockley
partial direction [211], and the y direction was set to the slip plane normal [111].
The initial slip was introduced into the model by moving all nodes above the slip
plane to the right by the magnitude of the Shockley partial ay/+/6, and then con-
straining all boundary nodes to their initial positions. The initially displaced mesh is
presented in fig. 10. The mesh contains 42 elements and 32 nodes for a total of 36
unconstrained degrees of freedom. :

Two different elements are present in the mesh: large nearly equilateral elements,
and long narrow elements. The equilateral elements are larger than R, and are thus
local; the long narrow elements are non-local, but because their width.is larger than

Fig. 10
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Initially distorted stacking fault FEM mesh.
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R, these elements only exhibit non-local effects in the y direction. In this manner
surface effects are eliminated from the model. The height of the narrow elements is
set exactly equal to the interplanar distance in the (111) direction aq /V/3, and the
global origin is selected such that these elements fall between adjacent atomic planes
(see fig. 11(a)). This allows the elements straddling the slip plane to act as a kinem-
tical mechanism for introducing slip. Thus from the atomistic point of view there is a
jump in displacement across the slip plane as expected, while in the continuum we see
a continuous linear variation in slip. Since the energy is computed atomistically, the
manner in which the slip is distributed in the continuum is inconsequential. Five
layers of the narrow elements are necessary to capture the contributions of the four
atomic planes adjacent to the slip plane to the SF energy (see fig. 11 (b)), as explained
above. The SF encrgy associated with the model is equal to the total energy per unit
thickness divided by the width of the model. )

The unrelaxed SF energy obtained from this model is identical to that obtained
from the LS analysis. Following NR minimization we find a relaxed SF energy of
about 6-:2 meV Afz, smaller than the LS value, but comparable.

In the second analysis the FEM model was created in the primary [110]-{111]
coordinate system and a deformation corresponding to a 1/2 Burgers vector slip was

Fig. 11
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Central elements of SF mesh. (a) Underlying crystal structure superimposed on elements.
Shading of atoms indicates depth (black = 0A, white = 1.426A). (b)
Representative atom (black) of central slip element surrounded by all atoms within
its cut-off radius. '
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introduced. On relaxation the SF energy was found to be the same as in the previous
Shockley partial analysis, and out-of-plane displacements between 0-822 and 0- 824 A
were observed in all nodes above the slip plane, very close to the expected value.

3.2, Lomer dislocation

The Lomer dislocation is generated at high temperatures by the interesection of
two extended (110) edge dislocations gliding on separate {111} planes. The Shockley
partials of these dislocations react to form the {001}(110) Lomer dislocation. As
both the Burger’s vector and dislocation line of this system lie in the {100} plane,
which is not an fcc glide plane, the dislocation tends to be sessile and acts as a barrier
to dislocation glide on the two intersecting {111} planes. Solving the problem using
both the LS approach and the QC approach results in a stable core for the Lomer
dislocation. The structures obtained using both methods are nearly identical.

In the LS approach a cylinder of atoms is displaced according to the linear elastic
solution for a straight dislocation in an anisotropic medium as given in Hirth and
Lothe (1992). One important question that arises here and also in the QC model
described later is where to place the singular elastic core with respect to the discrete
atomic positions. By moving the singularity associated with the elastic solution with
respect to the underlying crystal lattice, slightly different initial conditions are gen-
erated, though all are found to converge to the same final core structure.

Periodic boundary conditions are applied in the out-of-plane [110] direction, and
an outer annulus of atoms is frozen in correspondence with the elasticity solution.
We then allow the unconstrained atoms to relax into equilibrium positions by mini-
mizing the total potential energy using a CG method. Once the energy is fully
minimized a small random displacement is applied to the atoms near the core and
the minimization process is restarted to ensure that a stable minimum has been
reached. The final relaxed core structure and slip distribution plot are given in fig.
16 (a). Note the highly symmetrical pentagonal structure obtained. A typical LS run
for this type of problem contains between 50 000 and 100000 degrees of freedom.

In the QC approach we begin, as before, by defining a FEM mesh. The x
direction is taken to coincide with the slip direction [110], and the y direction is
set to the slip plane normal [001]. All nodes in the mesh are then displaced according
to the same anisotropic elasticity solution referred to above in the LS case and
displacement boundary conditions are applied (i.e. the displacements of all nodes
on the model boundaries are frozen to the elasticity solution values). In addition, all
out-of-plane displacements are constrained to zero to force plane strain conditions
(this is equivalent to the periodic BCs along the line direction applied in the LS
analysis). The initial distorted mesh appears in fig. 12 (a) and a colour-coded repre-
sentation of the same mesh indicating the local/non-local status of the elements near
the dislocation core was given previously in fig. 9 and discussed in §2.6. Note the
refinement near the core where anharmonic effects are expected and the gradual
coarsening of the mesh away from it.

As in the SF mesh discussed in the previous section thc element size is kept larger
than R, near the model boundaries to eliminate surface effects, thus allowing us to
model a dislocation in an infinite crystal. Also, as in the SF mesh a ribbon of five
elements with a height equal to the interplanar spacing in the y direction (ay/2 for
this orientation) is included to correctly capture stacking fault effects in case the
Lomer dissociates, and to kinematically introduce the slip. The mesh contains 700
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Fig. 12
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Lomer dislocation QC model. (a) Initially distorted FEM mesh. (b) Close-up of Lomer core
‘and initial strain energy density (€V A ™).

elements and 376 nodes for a total of 568 unconstrained degrees of freedom
(significantly less than the LS analysis).

Figure 12 (b) shows the initial strain energy density (SED) associated with the
linear elasticity trial solution near the core. One significant aspect of this plot is that
the slip ribbon elements are energy-free, indicating that the model is capable of
supporting stable defects. As noted earlier, this effect is a direct reflection of the
lack of convexity of the energy functional. By way of contrast, fig. 13 shows the
initial strain energy that would be associated with a linear elastic constitutive model,
indicating again the crucial role of the slip invariance described above. Here the
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Fig. 13
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Initial elastic strain energy density (eV A7?) associated with a Lomer dislocation as obtained
using a linear elastic constitutive model.

convexity of the strain energy leads to an energy penalty for fully shpped elements on
the slip plane.

CG minimization of the total potential energy leads to a relaxed SED such as is
shown in fig. 14. Comparing with fig. 12 (b) we see a reduction in the strain energy
density near the core from 0-0087 to 0-0067 eV A2, The fact that the energy remains
concentrated near the core indicates that the dislocation remains undissociated.

Figure 15 contains the relaxed continuum displacement fields. An alternative
representation of these ficlds is obtained by displacing the atoms of the underlying
crystal, uniquely tied to the continuum through the global crystal origin, according
to the displacement at their coordinates. When this is done and the results compared
with the LS structure we see very good agreement between the methods (fig. 16 (a))
with maximum deviations near the core of between 0-1—0- 2A Figure 16 (b) shows
the displacement jump across the slip plane in the x-direction (slip) and the
y-direction (opening displacement). The QC solution is less smooth than the LS
solution due to the reduction in the number of degrees of freedom; however, the
agreement between the methods is good, and 31gn1ﬁcant1y, both predict the same
core Size.

Re-examining the SED plot (fig. 14) we find regions exhibiting a negative energy
(relative to the crystal cohesive energy). This goes back to the discussion of non-
centrosymmetry effects preserited in §2.1. It is instructive to compare the atomic
neighbour structure of an atom in the QC model which is found to have a negative
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Fig. 14
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energy with the identical atom in the LS analysis where all atoms have positive
energy. This is presented in fig. 17. The investigated atom (indicated in the figure)
has 42 neighbours within the potential cutoff radius. The distance of each neighbour
from the investigated atom is plotted. It is interesting to see that the differences are
very small (less than 0-1 A) strengthening our earlier conclusion that these effects are
small and can be neglected.

3.3. Edge dislocation

As a final example we investigate the primary {111}(110) edge dislocation. As
explained in §3.1 this dislocation often dissociates into an extended dislocation
composed of two Shockley partial dislocations delimiting a stacking fault ribbon.

The LS solution follows along the same lines as those presented in the previous
section for the Lomer dislocation. We begin by displacing the atoms according to the
anisotropic linear elastic solution for a perfect edge dislocation (fig. 18) and then use
CG minimization to find the relaxed configuration. As expected, the dislocation
dissociates and a final splitting distance of 15- 4A is observed (fig. 19). The atoms
above and below the slip plane between the two partials move in opposite out-of-
plane directions. The maximum out-of-plane _displacement difference is observed
midway between the partials and equals 0-643 A. This value is less than the expected
value of 0-823 A, probably because of the small splitting distance allowing insuffi-
cient room for a fully developed SF to form. Figure 20 contains a SED plot gener-
ated directly from the LS solution (the energy of each atom is divided by the volume
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Fig. 15
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of its Voronoi polyhedron to yield a strain energy density). The dissociated structure
is clear.

The initial displaced QC mesh and SED plot are presented in fig. 21. The mesh
has 1020 elements and 540 nodes, resulting in a total of 1332 degrees of freedoms.
Figure 22 shows a plot of the representative atoms used in evaluating the constitutive
input superimposed on the underlying crystal lattice. This plot demonstrates how the
reduction in degrees of freedom in the QC method is achieved. Near the core all
atoms are sampled and the QC formulation essentially reduces to straightforward
LS, while away from the core fewer and fewer atoms are sampled as the solution
tends to the linear elastic regime.
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Fig. 16
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Figure 23 presents the final relaxed SED plot. Comparing with the identical LS
plot (fig. 20) we see that the overall magnitude and structure are similar but the QC
picture is more noisy and again negative energies are encountered. However, despite
the differences in the energy picture the final atomic structure is in excellent agree-
ment with the LS structure and appears essentially identical to the LS solution
presented previously in fig. 19. The relaxed out-of-plane displacement contour
plot is presented in fig. 24, with a maximum displacement difference across the
slip plane of 0-647 A at the centre of the SF ribbon. Finally, fig. 25 presents the
three components of the displacement jump across the slip plane (slip, opening
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Final relaxed primary edge dislocation core (LS solution).

displacement and out-of-plane displacement) compared with the LS values. As in the
Lomer case we find very good agreement between the two methods.

- § 4. SUMMARY AND CONCLUSIONS

We have developed a method for the analysis of coupled atomistic/continuum
deformation processes in crystals based on (i) the use of atomistic energy functions to
describe the constitutive response of the material and (ii) the use of an adaptive finite
element method for spanning multiple scales in the solution. The quasicontinuum
theory thus derived permits the analysis of crystals directly from the underlying
atomistic description of the total energy. In this manner, we can tap into the exten-
sive repository of energy functions which has been developed in recent years, both
from ab-initio calculations or by phenomenological approaches. The use of atomistic
constitutive models also confers on the strain energy density of the solid a periodic
structure. This in turn vastly enriches the range of possible behaviours of the solid by
enabling the displacement field to develop structure on the scale of the lattice.

The atomistic limit of the theory has been tested by way of three examples: a
stacking fault, a Lomer edge dislocation and a (111) edge dislocation in Al. While
this is not the intended use of the theory—the analysis of a single defect core is
performed far more effectively by a direct atomistic simulation—it is however impor-
tant that reasonably accurate results be returned by the theory in this limit as well. Tt
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Fig. 20
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Relaxed primary edge dislocation (LS solution), strain energy density (eV A‘Z) near core.

is, therefore, satisfying that the predictions of the method are in excellent agreement
with direct LS analysis in all three test cases considered. In the SF example, the
unrelaxed SF energy is identical to the LS value, while the relaxed values are reason-
ably close. For the Lomer dislocation, both QC and LS predict a stable undisso-
ciated core and are in very good agreement vis-a-vis the final core structure. Finally
in the (111) edge problem, both methods predict a relaxed dissociated structure with
an identical splitting distance of 15-4 A, which is roughly in keeping with experi-
mental observation.

Our main focus, however, is in nano-scale phenomena involving the cooperative
behaviour of multiple defects. A prime example, and one which illustrates the
strengths of the method, is nanoindentation, where the penetration of the indenter
is accommodated by the nucleation at the surface—and subsequent propagation into
the crystal—of a small number of discrete dislocations. The multiple-scale character
of this boundary value problem renders it awkward for analysis by either atomistic
or continuum methods. By contrast, our combined atomistic/continuum approach
permits the individual dislocations to be followed as they are nucleated under the
indenter and driven into the crystal, while, simultaneously, yielding the response of
the system at the nano-scale, e.g. in the form of the relationship between applied
force and depth of indentation (Tadmor, Phillips and Ortiz 1996). In this class of
applications lies the primary scope of the method.
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Primary edge dislocation QC model. (@) Initially distorted FEM mesh. (b) Close-up of edge
dislocation core initial strain energy density (€V A™?).
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Fig. 22
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Representative atoms (black) superimposed on the atoms of the underlying crystal (white).
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Relaxed primary edge discloation (QC solution), strain energy density (eV A™?) near core.



1562 - E. B. Tadmor et al.

Fig. 24
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Out-of-plane displacement near core of relaxed primary edge dislocation (QC solution). »
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