
A Repartit ioning Hypergraph Model for Dynamic
Load Balancing

Abstract

● In this paper, we present a novel repartitioning hypergraph model for dynamic load balancing
that accounts for both communication volume in the application and migration cost to move
data, in order to minimize the overall cost.

● Use of a hypergraph-based model allows us to accurately model communication costs rather
than approximating them with graph-based models.

● the new model can be realized using hypergraph partitioning with fixed vertices and describe
our parallel multilevel implementation within the Zoltan load-balancing toolkit.

I. Introduction
Objective and trade-offs of Repartit ioning problem :

1. balanced load in the new data distribution;
2. low communication cost within the application (as determined by the new distribution);
3. low data migration cost to move data from the old to the new distribution;
4. short repartitioning time.

● Total application execution time :
t tot= tcomptcommtmigtrepart (1)

● tcomp : application’s computation times,
● tcomm : application’s communication times,
● tmig : data migration time,
● trepart : repartitioning time,
● α : indicates how many iterations of the application are executed between each load-

balance operation.
● tcomp and trepart can be ignored; the cost function to be minimized by the repartitioning

algorithm reduces to :
cost time=t commtmig (2)

● the time spent in communication is proportional to the amount of data being sent.
Thus, the

● cost function to be minimized by the repartitioning algorithm becomes :

costvol=bcombmig (3)
● bcomm : amount of data sent in each iteration
● bmig : amount of data sent during migration.
● In this work, we present a repartit ioning-hypergraph model that minimizes the

sum of total communication volume in the application and migration cost to move
data, as stated in(3).

II. Previous work on dynamic load balancing

1. Dynamic load-balancing approaches
Three main methods: scratch-remap method, incremental method and
reparti tioning method.

a) Scratch-remap method
The computational model representing the modified structure of the application
is partitioned from scratch without accounting for existing part assignments.
Then, old and new partitions are remapped to minimize the migration cost.

b) Incremental method
Existing part assignments are used as initial assignments and incrementally
improved by using a sub-optimal cost function that minimizes either data
migration cost (diffusive methods) or application communication cost (refinement
methods).

c) Reparti tioning method
Existing part assignments are taken into account to minimize both data
migration cost and application communication cost.

2. Computational Models of Dynamic Load Balancing methods
There are three computational models : coordinate-based models, graph-based
models, hypergraph-based models.
(refer to the article [8] for more details)

a) coordinate-based models
such as Recursive Coordinate Bisection and Space-Filling Curves

b) graph-based models
c) hypergraph-based models

Category Property Coordinate
based

Graph based Hypergraph based

Scratch-remap Migration cost high high high

Communication cost high low low

Communication model none approximate accurate

Incremental Migration cost moderate low low

Communication cost high moderate moderate

Communication model none approximate accurate

Repartitioning Migration cost n/a low low

Communication cost n/a low low

Communication model none approximate accurate

III. Preliminaries

● A hypergraph H = (V,N) is defined by a set of vertices V and a set of nets (hyperedges)
N, each net n j∈N is a non-empty subset of vertices. A weight i can be assigned

to each vertex v i∈V , and a cost c j can be assigned to each net n j∈N

● P = {V1, V2, . . . , Vk} is called a k-way partition of H if each part Vp, p = 1,
2, . . . , k, is a non-empty, pairwise-disjoint subset of V and ¿p=1

k V p=V

● A partition is said to be balanced if
 W pW avg 1 for p=1,2 ,... , k (4)

● where W p=∑
vi∈V p

i and W avg=

∑
vi∈V

i

k
and 0 is a predetermined maximum

tolerable imbalance.

● In a given partition P, a net that has at least one vertex in a part is considered to be
connected to that part.

● The connectivity λj of a net nj denotes the number of parts connected by nj under
the partition P of H.

● A net nj is said to be cut if it connects more than one part (i.e., j> 1).

● CutCost(H, P) denote the cost associated with a partition P of hypergraph H.

CutCost H , P =∑
n j∈N

c j  j−1 (5)

● This cost metric exactly corresponds to communication volume in parallel computing

● The standard hypergraph partitioning problem is the task of dividing a hypergraph into
k parts such that :
✔ the cost (5) is minimized
✔ the balance criterion (4) is maintained.

1. Hypergraph Partit ioning with Fixed Vertices

● The standard hypergraph partitioning problem is the task of dividing a hypergraph into
k parts such that :
✔ the cost (5) is minimized
✔ the balance criterion (4) is maintained.

● Hypergraph partitioning with fixed vertices is a more constrained problem. In this
problem, in addition to the input hypergraph H and the requested number of parts k,
a fixed-part function f(v) is also provided as an input to the problem.

● denoted by :
○ f v =−1 i.e the vertex v is free i.e it is allowed to be in any part in the

solution P.
○ f v =q for 1≤q≤k i.e the vertex is fixed in part q i.e it is required to be in

Vq in the final solution P.

2. Multilevel Partit ioning Paradigm

Multilevel partitioning consists of three phases: coarsening, coarse partitioning and refinement.
(see more details in ref [1] and [2])

a) Coarsening phase.

● hierarchy of smaller hypergraphs that approximate the original one is generated
b) Coarse parti tioning phase.

● The smallest hypergraph obtained at the end of the coarsening phase is partitioned.

c) Refinement phase
● the coarse partition is projected back to the larger hypergraphs in the hierarchy and

improved using a local optimization method.

IV. Repartit ioning Hypergraph Model

● We call the period between two subsequent load-balancing operations an epoch of the
application.

● An epoch consists of one or more computation iterations and the computational
structure and dependencies of an epoch can be accurately modeled with a
computational hypergraph.

● The hypergraph that models the jth epoch of the application is donated by

H j
=V j , N j

 and the number of computation iterations in that epoch by αj.

● Load balancing for the first epoch is achieved by partitioning H1 using a static
partitioner.

● Here the repartitioning hypergraph model appropriately captures both application
communication and data migration costs associated with an epoch.

● To model migration costs in epoch j, we construct a repartitioning hypergraph
H j
= V j , N j

 by augmenting H j
 with k new vertices corresponding to each of

the k parts, and ∣V j
∣ new hyperedges using the following procedure:

○ Scale each net’s cost (representing application communication) in Nj by j
while keeping the vertex weights intact.
○ Add a new part vertex ui with zero weight for each part i, and fix

those vertices in respective parts; i.e., f ui=i for 1≤i≤k Hence
V j
=V j

∪u i∣1≤i≤k 
○ For each vertex v∈V i

 ,add a migration net nv between v and ui if
v is assigned to part i at the beginning of epoch j. Set the migration
net’s cost cv to the size of the data associated with v, since this
migration net represents the cost of moving vertex v to a different
part.

costvol=bcombmig

cost vol= jCutCost H j , P j
 ∑

nv∈
N j−N j

cv v−1 (7)
costvol= j ∑

n j∈N j

c j j−1 ∑
nv∈

N j
−N j



cv v−1

c d
bcomm 4 3
bmig 2 4

costvol =1 1∗42=6 1∗34=7

=1 0 1 0 ∗42=42 1 0 ∗34=34

V. Parallel Repartit ioning Tool
1. Coarsening Phase

● we approximate the original hypergraph with a succession of smaller hypergraphs with
similar connectivity and equal total vertex and edge weight.

● Parallel matching is performed in rounds. In each round, each processor broadcasts a
subset of candidate vertices that will be matched in that round. Then, all processors
concurrently compute their best match for those candidates and the global best match
for each candidate is selected.

● For fixed-vertex partitioning, vertices that are fixed to different parts, are not allowed
to match.

● There are three scenarios in which two vertices match:
○ Both vertices are fixed to the same part,
○ Only one of the vertices is fixed to a part,
○ Both are not fixed to any parts (i.e.,both are free vertices).

2. Coarse Partit ioning Phase
● In the coarse partitioning phase, we construct an initial partition of the coarsest

hypergraph available.

3. Refinement Phase
● The code is based on a localized version of the successful Fiduccia-Mattheyses

method,
● The algorithm performs multiple pass-pairs and in each pass, each free vertex is

considered to move to another part to reduce the cut metric.

4. Handling Fixed Vertices in Recursive Bisection
● Zoltan uses recursive bisection, to obtain a k-way partition. This recursive bisection

approach can be extended easily to accommodate fixed vertices.
● Then, the multilevel partitioning algorithm with fixed vertices described above can be

executed
● This scheme is applied recursively in each bisection.

VI. Experimental Results

1. Reparti tioning Approaches
● Repartitioning technique:

○ Three categories: scratch-remap, incremental and repartitioning.
○ Only refinement approaches within the incremental techniques category are

considered.

● Cost model:
○ Coordinate-based models are not considered.

● Optimization method:
○ Distinction between single-level versus multi-level partitioners

Repartitioning Cost Optimization
Partitioner technique model method Software

Z-repart repartitioning hypergraph multilevel Zoltan
Z-SL-repart repartitioning hypergraph single level Zoltan
Z-scratch scratch-remap hypergraph multilevel Zoltan
Z-SL-refine iterative hypergraph single level Zoltan
M-repart repartitioning graph multilevel ParMETIS
M-scratch scratch-remap graph multilevel ParMETIS

Properties of the partit ioners used in the experimental evaluation.

We compare six different partitioners given in Table 2 that collectively cover all options with
respect to each of the three aspects considered.

2. Dynamically Perturbed Data Experiments (refer to section 6.2 of [3])
● Two different methods are used to dynamically perturb the data in the experiments :

○ Dynamic structure perturbation
The first method introduces biased random perturbations that change the structure
of the data.

○ Dynamic weight perturbation
The second method simulates adaptive mesh refinement.

Name |V | |E| vertex degree Application Area
min max avg

xyce680s 682,712823,2321 209 2.4 VLSI design
slac6M 5,955,366 11,766,788 2 4 4.0 Finite element mesh
cage15 5,154,859 47,022,346 2 46 18.2 DNA electrophoresis

Properties of the test datasets; |V | and |E| are the numbers of vertices and graph
edges, respectively.

● The results indicate that our new hypergraph repartitioning method Z-repart performs

better than M-repart in terms of minimizing the total cost in the majority of the test
cases.

● Therefore, Z-repart provides a more accurate trade-off between communication and
migration costs than M-repart to minimize the total cost.

3. Adaptive Mesh Refinement Experiments (ref to [3])
4. Term-by-Document Experiments (ref to [3])

References :

[1] : Parallel Hypergraph Partitioning for Scientific Computing.
[2] : Hypergraph based dynamic load balancing for adaptive scientific computations.
[3] : A Repartitioning Hypergraph Model for Dynamic Load Balancing.
[4] : Graph partitioning model for parallel computing.
[5] : A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.
[6] : Partitioning and Load Balancing for Emerging Parallel Applications and Architectures.
[7] : Dynamic Load Balancing in Computational Mechanics.
[8] : Partitioning and dynamic load balancing for the numerical solution of partial differential
equations.

http://software.sandia.gov/~kddevin/IPDPS06_Final.pdf
http://www.cs.ucsb.edu/~gilbert/cs290iSpr2003/presentations/mlevel_serial.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.9586
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.556
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.556
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8977
http://www.cs.sandia.gov/~kddevin/papers/pp04.pdf
http://www.sandia.gov/~egboman/papers/JPDC-repart.pdf
http://www.cs.sandia.gov/~kddevin/papers/Catalyurek_IPDPS07.pdf

