
DYNAMIC LOAD BALANCINGIN COMPUTATIONAL MECHANICS�BRUCE HENDRICKSON AND KAREN DEVINEyAbstract.In many important computational mechanics applications, the computation adapts dynamicallyduring the simulation. Examples include adaptive mesh re�nement, particle simulations and tran-sient dynamics calculations. When running these kinds of simulations on a parallel computer, thework must be assigned to processors in a dynamic fashion to keep the computational load balanced.A number of approaches have been proposed for this dynamic load balancing problem. This paperreviews the major classes of algorithms, and discusses their relative merits on problems from com-putational mechanics. Shortcomings in the state-of-the-art are identi�ed and suggestions are madefor future research directions.Key words. dynamic load balancing, parallel computer, adaptive mesh re�nement1. Introduction. The e�cient use of a parallel computer requires two, oftencompeting, objectives to be achieved. First, the processors must be kept busy doinguseful work. And second, the amount of interprocessor communication must be keptsmall. For many problems in scienti�c computing, these objectives can be obtainedby a single assignment of tasks to processors that doesn't change over the course ofa simulation. Calculations amenable to such a static distribution include traditional�nite element and �nite di�erence methods, dense linear solvers and most iterativesolvers.However, a number of important applications have computational requirementsthat vary over time in an unpredictable way. For such applications, high perfor-mance can only be obtained if the work load is distributed among processors in atime-varying, dynamic fashion. These kinds of computations seem to be particularlyprevalent in computational mechanics and include the following applications.� Adaptive mesh re�nement (AMR). AMR is a rapidly maturing technol-ogy in which the computational mesh is locally re�ned to minimize the errorin a calculation. Elements are added or removed (h-re�nement) and/or thedegree of the approximation on individual elements is varied (p-re�nement) toobtain a desired accuracy. During the course of a simulation, the amount andlocation of re�nement can vary, so work must be migrated between processorsto maintain load balance.� Contact detection in transient dynamics. A simulation of a car crashis a prototypical transient dynamics calculation. A critical step in such acalculation is detecting when the deforming mesh intersects itself, e.g., whenthe bumper has crumpled into the radiator. This step requires a geometricsearch over a steadily evolving geometry. As the mesh moves, the work needsto be divided among processors in a di�erent way.� Adaptive physics models. In many computations, the computational ef-fort associated with a data point varies over time. For instance, a constitutivemodel for a high strain region may be more expensive than one for low strain.As the simulation evolves, the computational work associated with a point�This work was supported by the Applied Mathematical Sciences program, U.S. DOE, O�ce ofEnergy Research, and was performed at Sandia National Labs, operated for the U.S. DOE undercontract No. DE-AL04-94AL8500.ySandia National Labs; Albuquerque, NM 87185-1111, fbah,kddeving@cs.sandia.gov.1



2 Hendrickson and Devinecan vary, so the points may need to be redistributed among processors tobalance the work.� Particle simulations. When simulating particles under the in
uence ofshort-range forces (e.g., smoothed particle hydrodynamics or molecular dy-namics with van der Waals forces), the particles interact only with geometri-cally near neighbors. As these neighbors vary over time, redistribution of theparticles among processors can keep the communication cost low.� Multiphysics simulations. It is increasingly common to couple multiplephysical phenomena (e.g., crash and burn) into a single simulation insteadof isolating them. While the simulation of isolated phenomena may be pos-sible with a single distribution of data, coupled physics can require multipledistributions.Di�erent applications impose di�erent requirements upon dynamic load balancingalgorithms and software. Some applications are fundamentally geometric in nature(e.g., contact detection and particle simulations), while others are better described interms of mesh connectivity (e.g., AMR). There are also complicated tradeo�s betweenthe cost of the load balancer, the quality of the partition it produces and the amountof data that needs to be redistributed. The optimal tradeo� between these metricsdepends on the properties of the application as well as those of the parallel machine,as we discuss in detail in x2. For all these reasons, there is no single dynamic loadbalancing algorithm that is suitable in all settings. A number of di�erent methodshave been been devised for speci�c problems or problem classes. In x3 we review themajor categories of approaches and critically evaluate their strengths and weaknessesfor the various problems in computational mechanics, using the metrics discussedin x2.In general, dynamic partitioners are signi�cantly more complex to parallelize thanstatic ones. The reasons for this are not fundamentally algorithmic, but insteadhave to do with software complexity. While static partitioning tools can be run as asequential preprocessing step, dynamic partitioning must be performed on the parallelmachine. The load balancer must be called as a subroutine from the simulation code,so the two must agree on some data structures. The time and memory consumedby the partitioning algorithm take resources away from the simulation. Determiningwhen it is advantageous to redistribute the data and tasks requires a code to monitorand predict its performance. If data are moved between processors, the data structuresmust be rebuilt and the interprocessor communication patterns need to be updated.All of these issues add considerable complexity to the application code. We will discussthis software problem in more detail in x4. We then draw some general conclusionsand suggest some future research directions in x5.2. Load Balancing Issues and Objectives. The ultimate goal of any loadbalancing scheme, static or dynamic, is to improve the performance of a parallelapplication code. To achieve this objective, partitioners specify how the objects com-prising a computation are divided among processors. Objects can be mesh points orelements, atoms, smoothed particles, matrix elements or any other entity that the ap-plication treats as indivisible. For most applications in mechanics, the natural objectsare components of a computational mesh or some sort of particle. A load balancerwill determine how to assign these objects to processors to enable e�cient parallelcomputation. In general, a parallel code will perform well if this assignment of objectshas the following two properties.A. The computational work is well balanced across processors.



Dynamic Load Balancing 3B. The time spent performing interprocessor communication is small.To satisfy these properties, several questions must �rst be addressed.� What work needs to be balanced? Most real applications have several timeconsuming sections of code (or phases) such as constructing a matrix and solv-ing the resulting linear system, or computing forces and integrating forwardin time, or for transient dynamics the force calculation, time integration andcontact detection. Multiphysics simulations can have an even larger numberof computational phases. Unfortunately, a good division of objects for onephase may be poor for another. This problem can be handled in one of threeways. First, the load balancer can focus on the most time consuming phase.Second, the load balancer can try to balance an aggregate model of work,allowing non-optimal performance in each phase. Or third, each phase canbe independently load balanced. The right approach will depend upon theapplication.� How is workload measured? A simple approach is to count the number ofobjects assigned to each processor. But if objects have varying computationalcosts, then more re�ned estimates are needed. Examples include the numberof matrix elements associated with a mesh object, the number of interactionsa particle participates in, or the number of degrees of freedom for a p-re�ned�nite element. A static load balancer is forced to use some such model ofworkload, but a dynamic load balancer can use actual measurements of run-time.� What determines the cost of interprocessor communication? On most parallelmachines, the communication cost grows with message volume and with thenumber of messages. But is it more important to minimize the sum of these,or the maximum among all processors? How important is message congestionor competition for wires? Is it worthwhile to allow some load imbalance if itreduces the communication cost? The answers to these kinds of questions arehighly speci�c to the parallel machine and the application, but load balancersmust have some model of communication cost.These issues are relevant to both static and dynamic load balancing. But thedynamic load balancing problem has some additional requirements. In the staticcase, the decomposition of the problem can be performed by a stand-alone code on asequential machine. But a dynamic load balancer has to run on a parallel machine,and must be invoked by the application code. Any memory or time consumed by theload balancer is lost to the application. Thus, a dynamic load balancer must satisfya larger list of requirements than a static one. In addition to properties (A) and (B)above, a dynamic load balancer should strive to achieve the following.C. It should run fast in parallel.D. Memory usage should be modest.Another key di�erence is that in the dynamic situation the objects are alreadyassigned to processors. When the load balancer suggests a new assignment, someobjects must be moved to new processors. The time spent moving objects can bevery signi�cant, so it is important to have the new partition be an incremental modi-�cation to the existing one. Once the objects have been moved, data structures mustbe updated. The modi�ed data structures include those describing the objects ownedby a processor and also those depicting the communication patterns for the applica-tion. These considerations suggest two more desirable properties for a dynamic loadbalancer.



4 Hendrickson and DevineE. A small change in the problem should induce only a small change in thedecomposition. Algorithms that have this property will be called incremental.F. It should be easy to determine the new communication pattern. For example,simple geometric regions may be better than complex ones.The need for incrementality makes most static load balancing algorithms inappro-priate for the dynamic problem. Algorithms can be explicitly incremental by specif-ically striving to limit data movement. Or, they can be implicitly incremental byachieving this property automatically. Several of the geometrical algorithms discussedin x3.2 and x3.3 are implicitly incremental.During a simulation, the set of objects can change in several ways. The �rst pos-sibility is for new objects to be created and existing ones to disappear. If the objectsare grid points in adaptive mesh re�nement, this type of transition is observed. A sec-ond possibility is that the set of objects remains unchanged, but the work associatedwith each object varies over time. This kind of behavior occurs in AMR if the objectsare elements weighted by their polynomial degree or number of child elements. Athird possibility is that interactions between objects appear and disappear. Objectsrepresenting moving particles typically have this property. Di�erent load balancingalgorithms vary in their capacity for handling these di�erent kinds of changes.Since the dynamic load balancer is called as a subroutine, its interface shouldbe carefully designed. This design includes the mundane question of the argumentlists, but a deeper issue is how well the abstraction in the tool re
ects the needs ofthe application. One aspect of this problem relates to data structures. If the toolrequires a data structure that isn't native to the application, the structure must becreated. This construction takes time, memory and additional software development.Although generally not considered as part of the load balancing problem, this overheadis a signi�cant deterrent to using new tools. We feel that object-oriented softwaretechniques can play a signi�cant role in addressing some of these problems. We willdiscuss these issues further in x4, but for now we simply add one more property toour list.G. The tool should be easy to use.3. Algorithms for Dynamic Load Balancing. In this section, we describethe major classes of dynamic load balancing algorithms and critically evaluate themusing the criteria discussed in x2. In x3.1 we introduce master/slave techniques, whichare powerful when appropriate, but are only suitable to a small minority of scienti�ccomputing applications.Most dynamic load balancing algorithms can placed in one of two general classes:geometric and topological. Geometric methods divide the computational domain byexploiting the location of the objects in the simulation. Not surprisingly, geometricmethods are well suited to problems in which interactions are inherently geometriclike particle simulations or contact detection. But geometric methods can also beapplied to divide meshes, where nearness is an approximation to connectivity. Wediscuss the two major kinds of geometric partitioners in x3.2 and x3.3.Topological methods work with the connectivity of interactions instead of withgeometric coordinates. The connectivity is generally described as a graph. Thesemethods are best suited to partitioning computational meshes, where the connectivityis implicit in the mesh, but they can also be applied to particle systems. Topologicalmethods can lead to better partitions than geometric algorithms, but are usually moreexpensive. We describe two classes of topological approaches in x3.4 and x3.5. In x3.6we present some hybrid algorithms that can combine features of both geometric and



Dynamic Load Balancing 5topological methods.3.1. Master/Slave. The master/slave approach is a very simple parallel com-puting paradigm. At its most basic, one processor, the master, maintains a pool oftasks which it doles out to the remaining slave processors. Slaves perform a computa-tion and then ask the master for more work. This is a very 
exible model, and manyvariations are possible including multiple masters, a hierarchy of slaves and variationin the units of work [16, 44].The master/slave approach has some attractive features that make it well suitedfor many computational problems. It is quite simple to implement. It transparentlyhandles wide variation in the cost of individual tasks, and even works on heterogeneousnetworks of workstations. Unfortunately, it is not a good match for most problems inscienti�c computing. Master/slave approaches are only appropriate if the tasks canbe performed independently and asynchronously by a single processor. Furthermore,it must be possible to describe a task with a small amount of information so that themessages between master and slave are small. These assumptions are not satis�edby most scienti�c computations. But when they are, master/slave approaches arehighly e�ective. Examples include Monte Carlo calculations [1], ray tracing [21],visualization [51], and parameter studies in which a sequential code needs to be runrepeatedly with di�erent inputs [15].3.2. Simple Geometric. Most mechanics calculations have an underlying ge-ometry. And for many physical simulations, objects (e.g., mesh points, particles, etc.)interact only if they are geometrically near each other. These properties enable theuse of geometric methods to divide the work among processors. Here we review somesimple but e�ective geometric partitioners. A di�erent class of methods that alsorelies on geometry is described in x3.3.Consider the problem of dividing a mesh into two pieces. A simple way to do thisis to slice the mesh with a line (in 2D) or a plane (in 3D). Let all the mesh pointsor elements on one side of the plane comprise the �rst partition and those on theother side comprise the second. Depending on where the cut is made, partitions ofvarying sizes can be created. When performing a computation, communication willbe required for each mesh element which has a neighbor on the other side of the plane,so ideally, the number of such elements will be small. Intuitively, the use of a lineor plane to cut the mesh should help keep the amount of communication small, atleast for well shaped meshes. This intuition has been proved correct by Cao, Gilbertand Teng [7], as long as the ratio between the sizes of the largest and smallest meshelements is bounded.Several partitioning algorithms have been proposed that exploit this idea of re-cursively dividing the domain using lines or planes. The simplest such method isknown as Recursive Coordinate Bisection (RCB), and was �rst proposed as a staticload balancing algorithm by Berger and Bokhari [5]. The name of the algorithm isdue to the use of cutting planes that are orthogonal to one of the coordinate axes.The algorithm takes the geometric locations of all the objects, determines in whichcoordinate direction the set of objects is most elongated, and then divides the objectsby splitting based upon that long direction. The two halves are then further dividedby applying the same algorithm recursively.Although this algorithm was �rst devised to cut into a number of sets which isa power of two, the set sizes in a particular cut needn't be equal. By adjusting thepartition sizes appropriately, any number of equally-sized sets can be created.



6 Hendrickson and DevineThis freedom to adjust set sizes was exploited by Jones and Plassmann [29] toimprove the basic algorithm in their work on adaptive mesh re�nement. They call theirapproach Unbalanced Recursive Bisection, or URB. The basic RCB algorithm dividesthe set of objects into halves, without paying attention to the geometric propertiesof the resulting sub-regions. If there is a large variation in object density, one of thetwo sub-regions could have a large aspect ratio. Since the communication volume isrelated to the size of the region boundary, large aspect ratios are undesirable. URBavoids large aspect ratios by considering geometric shape as it chooses a cutting plane.Instead of dividing the objects in half, it tries to divide the geometry in half usingthe observation that, if the set of objects is to be divided among q processors, it isOK for this cut to produce subsets with relative sizes 1 : (q� 1), or 2 : (q� 2), or . . . .URB selects whichever ratio leads to the most nearly equal division of the geometry.Jones and Plassmann report that this leads to a modest reduction in communicationcost.The key computational step in these algorithms is the determination of the place-ment of the cutting plane. Say, for example, we have chosen to divide in the directionorthogonal to the x-axis. We now need to �nd a value x0 so that a speci�ed fractionof the objects' x-coordinates are larger than x0. We also need to solve this selectionproblem in parallel. One obvious approach would be to sort all the x-coordinate val-ues, but this is unnecessarily expensive. A better method is to guess a value for x0,count the number of objects to the left and right, and use the result to make a betterguess. The counting process is performed in parallel, and the results are summed viaa communication operation. The approach runs quite quickly, and is fairly simple toimplement.An alternative approach which also uses cutting planes is the Recursive InertialBisection (RIB) algorithm described by Simon [48]. This algorithm doesn't con�neits cutting planes to be orthogonal to an axis. Instead, it tries to �nd a naturallylong direction in the object distribution automatically, using a mechanical principle.The objects are treated as point masses, and the direction of principle inertial isidenti�ed. The cutting plane is then chosen to be orthogonal to this direction. Theinertial direction can be found by computing eigenvectors of a 3� 3 matrix, but thematrix construction requires summation of contributions from all the objects. Thus,this algorithm is somewhat more expensive than those that use coordinate directions,but it generally produces slightly better partitions.The quality of partitions generated by these cutting plane algorithms are gener-ally much poorer than those produced by some of the graph partitioning algorithmsdiscussed in x3.5. However, their simplicity and speed are appealing. Also, for mesh-less problems which lack a static connectivity, the graph to partition can be di�cultor expensive to construct, so geometric methods are preferable. Although RCB andURB generally produce slightly worse partitions, they have two compelling advan-tages relative to RIB. First, with RCB and URB the geometric regions owned by aprocessor are simple rectangular parallelepipeds. This geometric simplicity can bevery useful. For instance, in [42] it is used to speed up the determination of whichprocessors' regions intersect an extended object.Second, and more universally, RCB and URB partitions are incremental. If theobjects move a small amount, then the cutting planes will only change slightly andthe new partition will be very similar to the previous one. This is not true of RIBpartitions since the direction of the inertial axes is more sensitive to perturbations.This mixture of simplicity, speed and incrementality make RCB and URB very



Dynamic Load Balancing 7attractive algorithms for dynamic load balancing. In addition to the adaptive meshre�nement applications mentioned above, they have been applied with success to thecontact detection problem [42] and particle simulations [50, 42]. The shortcomings ofthese algorithms are the mediocre partition quality and the limitation to applicationswhich possess geometric locality.A more sophisticated partitioning approach developed by Miller, Teng and Vavasisuses circles or spheres instead of planes to divide the geometry [35]. The interiorof the sphere is one partition while the exterior is the other. This algorithm hasvery attractive theoretical properties { it comes within a constant factor of the bestpossible bound for all well-shaped meshes. Unlike the result for cutting with planes,this proof does not require any additional constraints on the sizes of mesh elements.Experiments by Gilbert, Miller and Teng [28] show that this approach can generatepartitions of quality comparable to those produced by graph partitioning algorithms.However, this algorithm is considerably more complex and expensive than the simpleapproaches that use cutting planes. Although this algorithm has not yet been appliedto the dynamic partitioning problem, we feel it deserves consideration. It would beeasier to parallelize than the more sophisticated graph partitioning algorithms. Andincrementality can be enforced by not allowing the centers of the cutting spheres tomove (although this restriction might invalidate the theoretical analysis).3.3. Octrees and Space Filling Curves. A very di�erent type of geometricpartitioning approach is based upon a �ne-grained division of the geometry. The smallpieces are then combined to form the region owned by a processor. The �ne-grainedspatial division is performed by simultaneously dividing each of the coordinate axesin half. This produces four subregions in 2D and eight subregions in 3D. Note thatunlike the cutting plane algorithms discussed in x3.2, this division is entirely geometricand takes no account of the locations of objects. Each of these subregions is dividedfurther if it contains multiple objects. A simple data structure known as an octree (orquadtree in two dimensions) keeps track of the relationships between these geometricregions. The root of the octree represents the entire geometry. When a geometricregion is divided, each of the eight octants becomes a child of the vertex representingthe region. This data structure is widely used for mesh generation and adaptive meshre�nement [2, 11, 36, 47].Octrees can also be used for partitioning. A traversal of the tree de�nes a globalordering on the tree leaves, which correspond to individual objects. This ordered listcan then be sliced to generate any number of partitions. This basic algorithm is calledOctree Partitioning [10, 19], or Space-Filling Curve (SFC) Partitioning. This approachwas �rst used by Warren and Salmon for gravitational simulations [57]. Patra andOden were the �rst to apply it to adaptive mesh re�nement [38, 40]. Pilkington andBaden used this approach for smoothed particle hydrodynamics and reported resultssimilar to using Recursive Coordinate Bisection [41].For applications that don't already have an octree, a binning algorithm based oncoordinate information can be used to build an octree for the load balancer. Eachprocessor stores a part of the global octree. Two passes through the local octreesare needed. The �rst pass sums into each node of the octrees the amount of workcontained in the node and its subtrees. A parallel pre�x operation is performed onthe processor work loads to obtain a cost structure for the set of all processors. Thus,the total cost and optimal cost per partition are known to all processors. A partialdepth-�rst search of the octrees then uses the cost information to determine whichprocessor should own the subtrees in the new decomposition. An entire subtree is



8 Hendrickson and Devineadded to a partition if its costs do not exceed the optimal partition size; otherwise,the traversal recursively descends the tree and evaluates each child node.The partitions produced by SFC are slightly worse than those produced by thesimple geometric algorithms discussed in x3.2 [19]. This is because the geometric re-gion assigned to a processor is not a simple box, but rather a union of boxes whichincreases the boundary size. But SFC has several nice properties. It is fast; Flahertyand Loy report it to be faster than Recursive Inertial Bisection [19], and Pilkingtonand Baden observe it to be comparable in runtime to Recursive Coordinate Bisec-tion [41]. It is also incremental. In the comparisons of Flaherty and Loy, it requiresless data migration than RIB (but recall that RIB is not incremental).Although the partitions can be generated without explicitly sorting the vertices,the global ordering induced by a sort can be useful. The ordering exhibits geometriclocality which can improve cache performance in the computation. A global number-ing also simpli�es tools which automate a translation from a global numbering schemeto a per-processor scheme. This can simplify application development [17, 39].To summarize, the runtime and quality of Space Filling Curve Partitioning areroughly comparable to the simple geometric approaches described earlier. SFC isperhaps a bit faster, but a bit lower quality. It is more complex to understand and toimplement than simple geometric algorithms, but simpler than the graph partitioningapproaches discussed in x3.5. In our opinion, as a dynamic load balancing tool, SFChas little advantage over the simpler Recursive Coordinate Bisection. However, theglobal numbering it enables can simplify some other aspects of code development andperformance tuning.3.4. Local Improvement. Local load-balancing methods use measures of workwithin small sets, or neighborhoods, of closely-connected processors to improve loadbalance within each neighborhood. The neighborhoods are chosen to overlap, so that,over several iterations of the local load-balancing, work can be spread from neighbor-hood to neighborhood, and eventually across the global processor array. Topologicalconnections of the data are used to select objects for migration in a way that attemptsto minimize communication costs for the application.Unlike global methods, each iteration of a local method is usually quite fast andinexpensive. Because all of the information and communication is performed withinsmall sets of processors, the methods scale well with the number of processors. Bydesign, local methods are incremental, as they move objects only within a small groupof processors. Moreover, they can be invoked to only improve load balance, ratherthan requiring that a global balance be reached before termination. One iteration ofa local method can reduce a single heavily loaded processor's work load signi�cantly.Since the total computation time is determined by the time required by the mostheavily loaded processor, a small number of iterations may be all that is needed toreduce imbalance to an acceptable level.When global balance is desired, however, many iterations of a local method may berequired to spread work from a few heavily loaded processors to the other less-loadedprocessors. The convergence rate to global balance is determined by the particularlocal algorithm used to compute the amount of work to migrate. A number of methodswill be discussed below. In addition, since global information is not used by localmethods, maintaining high partition quality is more di�cult with local methods.Local methods typically use simple heuristics to determine which objects should bemigrated. These heuristics attempt to minimize parameters such as cut edges ordomain interface size. A number of selection strategies will be discussed below.



Dynamic Load Balancing 9In general, local methods are extremely e�ective at dealing with small changesin load balance, such as those caused by local re�nement in adaptive �nite elementmethods. However, large changes in the processor work loads may more appropriatelybe handled by a global method that would produce higher quality partitions.Global load-balancing strategies are necessarily synchronous. All processors per-form some computation, synchronize, and then enter the load-balancing phase. Thus,lightly loaded processors must wait idly for more heavily loaded processors to completetheir computation before performing the load balancing. Local methods can also beexecuted synchronously, following the same model as global methods (e.g., [10, 11, 56,61]). Some local methods, however, can be performed asynchronously. Processors caninitiate load balancing when they become idle, requesting work as they need it. Singleneighborhoods may perform load balancing while other processors are computing.The synchronous model is straightforward to implement, portable, and does notrequire operating system or application support for handling interrupts to initiate bal-ancing. However, computing time is lost when lightly loaded processors wait to syn-chronize with heavily loaded processors. The asynchronous model allows processorsto acquire work as soon as they become idle. However, it is signi�cantly more di�cultto program. Logic must be included to handle interrupts or check for load-balancingmessages during the computation. Some implementations use threads to implementasynchronous load-balancing [8, 59, 63]; these implementations may require operat-ing system support and be less portable than synchronous implementations. Otherimplementations include message checking within the application, complicating thelogic of the application [18, 62]. Since many parallel scienti�c applications have nat-ural synchronization points, synchronous algorithms can often be used successfully,without the added complication of asynchronous algorithms.Many local methods have two separate steps. In the �rst step, the algorithmdecides how much work should be moved from a processor to each of its neighborsin order to balance the load. In the second step, the algorithm selects the objects(e.g., elements, nodes, particles, surfaces) that will be migrated to satisfy the worktransfers determined in the �rst step. The quality of the partition depends uponthis selection process. For both steps of the algorithm, many methods have beensuggested.3.4.1. Determining Work Flow. To determine the 
ow of work between pro-cessors, a di�usive algorithm is often used. These algorithms were �rst proposed byCybenko [9]. In their simplest form, they model the processor work loads by the heatequation @u=@t = �r2u(3.1)where u is the work load and � is a di�usion coe�cient. Using the processors' hard-ware connections or the application's communication patterns to describe the compu-tational mesh, Eq. (3.1) is solved using a �rst-order �nite di�erence scheme. Since thestencil of the di�erence scheme is compact (using information from only neighboringprocessors), the method is local. The resulting method takes the formut+1i = uti +Xj �ij(utj � uti)(3.2)where uti is processor i's work load after iteration t, and the sum is taken over allprocessors j. The weights �ij � 0 are zero if processors i and j are not connected



10 Hendrickson and Devinein the processor graph, and 1�Pj �ij � 0 for every i. The choice of �ij a�ects theconvergence rate of the method. It depends on the processor connectivity due to thearchitecture or application communication pattern; see [9, 14] for details.Several methods have been proposed to accelerate the convergence of di�usionmethods. For example, di�usion methods have been used with parallel multilevelmethods [26, 46, 54, 55], as described in x3.5. Watts, et al. [58, 59] propose usinga second-order implicit �nite discretization of Eq. (3.1) to compute work transfers.This scheme converges to global balance in fewer iterations, but requires a bit morework and communication per iteration.The method of Hu and Blake [27] is used in several parallel decomposition pack-ages [46, 56]. They compute a di�usion solution while minimizing the 
ow of workover the edges of the processor graph, enforcing incrementality. To compute worktransfers, they use a more global view of the processors' load distributions. Theysolve a linear system Lx = b, where x is the di�usion solution and b contains thedi�erence between the processors' work loads and the average load. L is a Laplacianmatrix. Each diagonal entry lii is the degree of processor i in the processor graph;non-diagonal entries lij are -1 if processors i and j are connected in the processorgraph and zero otherwise. The system is solved by a conjugate gradient method. Themethod determines the di�usion coe�cients iteratively rather than keeping them �xedas in the di�usion methods above. This method may increase the amount of globalcommunication to obtain global balance, but the additional cost can be worthwhilesince the amount of load movement is minimized.A variation of the di�usion model is a demand-driven model, where under-loadedprocessors request work or overloaded processors export work when they detect thattheir neighbors have become idle. The result is similar to di�usion algorithms, exceptthat work is transferred to only a subset of neighbors rather than distributed to allneighbors as in the di�usion model. It can increase the size of the maximum worktransfer, but can reduce the total number of work transfers per iteration.There are several implementations of the demand-driven model [18, 34, 60, 61, 62].For example, Leiss and Reddy [34] use a demand-driven model in neighborhoods thatfollow the hardware connectivity of the parallel machine. Wheat, et al. [61] extendtheir de�nition of a neighborhood to include all processors within the communicationconnectivity of the application. Each processor requests work from the most heav-ily loaded processor in its neighborhood. Processors then satisfy requests based onrequest size, satisfying the largest requests �rst until all work available for export isexhausted. Processors may not export so much work that their own work loads fallbelow the neighborhood average; this restriction prevents oscillations of work betweenprocessors in subsequent balancing steps. To prevent convergence to an imbalancedstate (which can happen in the di�usion algorithms in [9, 26]), every processor thatreceives a request for work must export at least one object.In [62], a sender-initiated model is compared with a receiver-initiated model. Bothmodels are asynchronous. In the sender-initiated model, an overloaded processordetermines which of its neighbors are less loaded and sends a portion of its excesswork to those neighbors. In the receiver-initiated model, an under-loaded processordetermines which of its neighbors are more heavily loaded and requests work fromthose neighbors. The neighbors can satisfy work requests with up to half of theirwork loads. The receiver-initiated model holds several advantages over the sender-initiated model [62]. First, the majority of the load-balancing overhead is assumedby the lightly loaded receivers. Second, since the models are asynchronous, work load



Dynamic Load Balancing 11information may be out-of-date by the time it is used. Thus, in the sender-initiatedmodel, a processor may transfer excessive or insu�cient amounts of data to under-loaded processors. In the receiver-initiated model, a processor may request excess orinsu�cient work, but its neighbor will transfer no more than half its own work, thususing up-to-date information in the transfer and reducing the e�ects of aging.Another di�usion-like algorithm is dimensional exchange, introduced in [9] andanalyzed further in [13, 62, 63]. A hypercube architecture is assumed to describe thealgorithm. In a loop over hypercube dimensions i, a processor performs load balancingwith its neighbor in that dimension, i.e., with the processor whose processor numbermatches that of the given processor except in bit i. The two processors divide thesum of their loads equally among themselves. After iterating over all dimensions ofthe hypercube, the system is completely balanced.Although the dimensional exchange algorithm is described in terms of a hyper-cube, it can be applied to other architectures such as meshes. However, communica-tion for non-hypercube architectures is non-local, as logical neighbors will not neces-sarily be physical neighbors. The generalized dimension exchange method [63] sug-gests using an edge-coloring to maintain nearest-neighbor exchanges in non-hypercubearchitectures; however, it requires more iterations to reach convergence. More impor-tantly, dimensional exchange may migrate work to distant processors and processorswith non-contiguous data regions, increasing communication costs for the applicationcode. This disadvantage outweighs the improved convergence of the method overother di�usion methods.3.4.2. Selecting Objects to Migrate. The second step of a local method isdeciding which objects to migrate to satisfy the work transfers computed in the �rststep. A number of heuristics have been used to determine which objects should betransferred. Typical goals include minimizing communication costs (through minimiz-ing the number of edge cuts in the application's communication graph), minimizingthe amount of data migrated, minimizing the number of neighboring processors, op-timizing the shapes of the subdomains, or combinations of these goals.Many load-balancing algorithms use a version of the gain criteria from the al-gorithm by Kernighan and Lin (KL) [33] to select objects to transfer (e.g., [11, 24,56, 61, 63]). For each of a processor's objects, the gain of transferring the objects toanother processor is computed. For example, to minimize edge-cuts, the gain can betaken as the net reduction of cut edges if the object is transferred to the new targetprocessor. The set of objects with the highest total gain is selected for migration.Objects are selected until the sum of their work loads is approximately equal to thework transfer computed by the �rst load-balancing phase. In some variants of the KLalgorithm only objects on subdomain boundaries are examined for transfer.The element selection priority scheme of Wheat [60] is an example of a KL-likealgorithm with uniform object and edge weights. Gain is measured by edge-cuts inthe graph. All transfers of objects are one-directional, so collisions (the simultaneousswapping of adjacent objects between two processors which counteracts their individ-ual gains) do not arise. In [11], Wheat's work is extended by weighting the edges byfrequency of communication and the objects by their computational load. To reducemigration costs, high-gain objects with the largest computational loads are selectedfor migration.Walshaw, et al. [56] modify the de�nition of gain to describe a relative gain. Therelative gain of an object with respect to a neighboring processor is the object's gainminus the average gain of its neighboring objects in the neighboring processor. This



12 Hendrickson and Devinerelative gain measures the likelihood of neighboring objects migrating to the object'sprocessor, thus reducing the number of collisions. However, thrashing may occur overseveral iterations; additional stopping criteria are needed to end the iterations whenthe cost of the partition has not decreased.Hammond [22] performs pairwise exchanges of objects between pairs of processorsto improve an existing decomposition. The processor graph is edge-colored to allowparallel computation between pairs of adjacent processors throughout the graph. Foreach pair of processors, the best object to be moved in each direction is selected. Ifthe total gain of moving both objects is positive, the objects are exchanged betweenthe processors. This process is repeated for each color in the processor graph.Still other variations on KL-based selection strategies are possible. In Schloegel, etal. [46], objects that decrease the edge cut while maintaining graph balance, maintainthe edge cut while improving graph balance, or maintain both edge cut and balancewhile moving the object to its initial processor are chosen for migration. This thirdcondition lowers migration costs by assigning objects to their originating processorwhenever possible. Walshaw, et al. [56] migrate objects that improve the edge-cutwhile maintaining the balance or improve the balance while maintaining the edge cut.Unlike Schloegel, et al., they also migrate any object that improves the balance, evenif it results in a higher edge cut.Most selection methods optimize some measure of the subdomain interface size inan attempt to minimize the application's communication costs. In some applications,however, criteria other than subdomain interface size become important. For domaindecomposition linear solvers, for example, the aspect ratio of the subdomains a�ectsthe convergence of the solvers. In [12, 53], the cost function to be minimized is aweighted combination of the load imbalance and the subdomain aspect ratio. Thus,objects whose coordinates are farthest from the average coordinates of all the proces-sor's objects are selected for migration. While this criterion is speci�c to a particularapplication, it demonstrates that, just as no one load balancing method is suitablefor all applications, no one object selection criterion is optimal for all applications.3.5. Graph partitioners. A number of algorithms and software tools havebeen developed for the problem of statically partitioning a computational mesh. Themost powerful of these algorithms use a graph model of the computation, and applygraph partitioning techniques to divide it among processors. In principle, a graphcould be constructed for any computation, but this model is most commonly usedfor mesh-based applications where the graph is closely related to the mesh. Unlikethe approaches described in x3.4, the static partitioning algorithms are global { theyexamine all of the data at once and try to �nd the best possible partition.These static partitioners generally run on sequential machines as a preprocess-ing step. As a consequence, most of the static algorithms are inappropriate for thedynamic load balancing problem. They are either too expensive or too di�cult toparallelize, and they have no notion of incrementality. Despite these problems, therehave been several attempts to apply graph partitioning ideas to the dynamic load bal-ancing problem. Although these algorithms tend to be expensive, they can generatehigh quality partitions. In situations where they are applied infrequently, they can bevery useful partitioners.One of the more popular static partitioning algorithms is known as RecursiveSpectral Bisection (RSB) [43, 48]. This approach uses an eigenvector of a matrixassociated with the graph to partition the vertices. Although it usually produceshigh quality partitions, the eigenvector calculation is very expensive. Barnard tried



Dynamic Load Balancing 13to circumvent this problem via a parallel implementation [3]. The result is primarilyuseful for static partitioning, but it can also be used in a dynamic setting. However,the eigenvector calculation is very expensive relative to the geometric methods andthe local improvement schemes discussed above. Also, the basic RSB algorithm hasno mechanism for encouraging a new partition to be an incremental modi�cation ofthe current one.In [52], Van Driessche and Roose show how RSB can be modi�ed to include incre-mentality. In [25], this insight is generalized to apply to a class of graph partitioningalgorithms, including the multilevel methods described below.The most popular static partitioning algorithms are multilevel techniques [6, 24,30]. These methods construct a sequence of smaller and smaller approximations to thegraph. The smallest graph in this sequence is partitioned. Then this partition is prop-agated back through the intermediate graphs, periodically being re�ned. Althoughgood sequential implementations of this algorithm have been developed [23, 30], par-allel implementations have proved to be quite di�cult. Both the construction of thesmaller approximations and the re�nement operation are challenging to parallelize.These challenges have been addressed in two recent e�orts: ParMETIS [31, 32, 46]and JOSTLE [54, 55]. These tools essentially perform a local improvement like thosedescribed in x3.4, but they use a multilevel approach to select which objects to move.This makes them more powerful than other local improvement algorithms, but theyare also more expensive in both runtime and memory.In summary, graph partitioning algorithms give the highest quality partitions ofany class of dynamic load balancing algorithms, albeit at a high computational cost.In practice, they are restricted to mesh-based calculations. The standard formulationsare generally not incremental, but they can often be modi�ed to become so. The in-terface to a graph partitioning routine is usually signi�cantly more complex than theinterface to a geometric partitioner. The construction of the graph takes time andspace. We will discuss this issue further in x4. It is our opinion that these limitations,particularly the runtime, will limit the use of graph partitioning algorithms to appli-cations in which they are invoked only infrequently. One important setting for suchusage is hybrid methods as discussed in x3.6.3.6. Hybrid Methods. Several dynamic load balancing algorithms don't con-veniently fall into any of the previous sections. One such method is the dynamicspectral algorithm of Simon, Sohn and Biswas [49]. This approach is a hybrid ofspectral methods and simple geometric techniques. As a preprocessing step, a feweigenvectors of a matrix associated with the graph are computed. These k eigenvec-tors provide a mapping from each vertex in the graph to a point in a k dimensionalEuclidean space. During the parallel simulation, this Euclidean representation isused to partition the graph using the Recursive Inertial Bisection algorithm describedin x3.2. The partition will change as weights associated with the vertices evolve.This approach leads to partition quality that is nearly as good as Recursive Spec-tral Bisection, but at a much lower cost. However, it has three shortcomings. Oneobvious disadvantage is the expense of the up-front calculation of eigenvectors. Asecond limitation is the restriction of the method to problems in which vertex weightschange, but vertex connectivity does not. A third, more minor, problem is that theinertial partitioning technique is not incremental. This could be alleviated by usinga di�erent geometric partitioner like Recursive Coordinate Bisection.A broader class of hybrid methods can be constructed by combining global meth-ods with local ones. Expensive, high-quality algorithms (like graph partitioning) can



14 Hendrickson and Devinebe used infrequently, while cheaper methods (like local improvement) can be appliedmore often. Combining the methods gives some of the advantages of both. The high-quality methods will ensure that good partitions are maintained. But their cost willbe controlled by using cheaper methods most of the time.This 
exible approach allows a user to trade o� quality for partition runtimeto optimize the overall performance of an application. Unfortunately, it requires aneasy-to-use library with a range of algorithms, all accessible via a simple interface. De-signing and implementing such a library is di�cult, and none has yet been developed.We will discuss these challenges further in x4.3.7. Summary. In Table 3.1, we summarize our assessment of the relative meritsof the principle algorithms we have described. The criteria we use in the evaluationare those (A-F) which were discussed in x2. We don't include a column for ease-of-use since this is so heavily dependent upon the implementation. But in general,the geometric algorithms are easier to interface with than the graph methods. Thealgorithms are given from 1 to 3 stars on most criteria, with more stars being better.In the column on incrementality, the incremental algorithms are designated as either(I)mplicit or (E)xplicit.We have not included a row for hybrid methods in which di�erent algorithms arecombined. Although we feel this is a very promising direction, numerous combinationswith di�erent characteristics are possible.Needless to say, this concise representation hides more information than it reveals.The assessments are unavoidably subjective and other researchers may have di�erentopinions.Method Balance Quality Speed Memory Incre- Newmental Comm.Master/Slave1 *** *** Not *** N/A N/AScalableGeometric MethodsRCB/URB *** * *** *** I ***RIB *** * ** *** No **Octree/SFC *** * *** ** I **Local MethodsDi�usion2 *4 ** *** *** E *Demand-Driven2 *4 ** *** *** E *Dim. Exchange3 *4 ** *** *** E *Graph PartitionersRSB *** *** * * No *Multilevel *** *** ** * E *Hybrid MethodsDynamic Spectral5 *** ** ** ** No *Table 3.1Summary of dynamic load balancing methods and their characteristics using the criteria in x2.1Limited applicability.2Can be used to only improve balance; can be asynchronous.3Hypercube architectures are best for this algorithm.4Many iterations may be required to obtain balance.5Does not handle changing mesh topology.



Dynamic Load Balancing 154. Software Challenges. There are several widely used software tools for staticpartitioning, e.g., Chaco [23] and Metis [30]. These tools typically read a graph orgeometry from a �le, and write the partition to another �le. Although there havebeen a number of research e�orts in dynamic load balancing, most of these projectshave produced tools that are useful only in a single application or a closely relatedset of codes [4, 20, 37, 45]. No tool for dynamic load balancing has gained as wide auser base as the static partitioning tools. The principle reason for this is that using adynamic load balancing tool is much more complex than using a static one. There area variety of factors that combine to create this complexity, but the primary reason isthat dynamic load balancers are invoked as subroutines. The static tools mentionedabove use �le interfaces, and so avoid the problem of linking with an application.A second reason why software for the static problem is more mature is that dy-namic balancers must be parallel, while static ones can be (and usually are) sequential.Yet a third reason is that there are more objectives to trade o� in the dynamic set-ting. Speci�cally, while static partitioners need only worry about runtime and quality,dynamic algorithms must also consider the cost of moving the objects. With moreobjectives to trade o�, any particular algorithm is likely to be optimal on only a frac-tion of the design space. So an ideal tool will have a multiplicity of algorithms, whichadds complexity to the development and to the interface.The key issue in interfacing with a dynamic load balancing tool is the type ofdata structures required to describe the problem. The time spent forming thesedata structures and the memory they consume can signi�cantly impact applicationperformance. And the code required to build complex entities like graphs raises asigni�cant barrier to the adoption of a new tool. It is for these reasons that mostdynamic load-balancing tools are speci�c to one application or a set of related codes.These domain-speci�c tools can work with the native data structures, simplifying theinterfaces and improving performance. But these advantages come at a high cost.Each research group has to spend considerable time implementing its own tool. Asa consequence, new algorithmic insights are slow to propagate into applications, andfew careful comparisons of algorithms can be performed.One way to avoid some of these problems is to use object-oriented software design.For instance, instead of requiring a full graph description, the load balancing tool couldbe passed a function that can generate the list of neighbors for any mesh element. Ifthe load balancing algorithm can be constructed out of a few simple functions likethis, a new data structure need never be formed explicitly. These functions will referback to the native data structure instead. Each application code will need to providethese functions, but if they are su�ciently simple the functions should be easier towrite than code to create a complex data structure. And duplication of memory is nolonger an issue.An object-oriented approach requires careful design to ensure that the selectedfunctions are simple enough for the application, yet powerful enough for the loadbalancing algorithms. Also, the cost of many function invocations will slow down theload balancer. But we believe that the ease of migration between applications andthe memory savings can more than compensate for the performance degradation.Object orientation won't solve all of the software challenges associated with dy-namic load balancing. There are a number of di�cult questions that remain. Oneimportant question is the appropriate level of abstraction for a load balancing tool.Throughout this paper we have implicitly assumed that tools should be built aroundgeometric coordinates and/or a graph with objects as vertices. The generality of



16 Hendrickson and Devinethese models is appealing, but they are also limiting. For instance, when partition-ing a mesh, the elements, faces, edges and vertices all get divided (or in some casesshared) among processors. A simple graph is not rich enough to encode all of theserelationships. So a load balancing tool focused on mesh applications could choose touse a richer abstraction. Of course, this complicates the interface issue.A second example comes from work using geometric methods to dynamicallyload balance the contact detection problem [42]. In this problem, some �nite elementsurfaces need to be shared among several processors. Figuring out which surfaces needto go where involves nontrivial interactions between the application data structuresand the load balancer. Compared to a generic load balancer, a tool focusing on thisapplication can provide a higher level of information to the application.Another important question is what auxiliary functionality a load balancer shouldprovide. For example, an important aspect of any adaptive calculation is a mecha-nism for deciding when it is worthwhile to rebalance the computation. This decisionrequires a tradeo� between load imbalance and the cost of rebalancing. A library thathelps an application make this decision will be more valuable than one that requireseach application to develop this functionality anew.Another example of possible auxiliary functionality is assistance with the move-ment of objects. This can be one of the most daunting aspects of developing a paralleladaptive code, and one of the easiest to implement ine�ciently. Although some of thisfunctionality will be application speci�c, a general purpose tool could provide someassistance. A closely related problem is that of determining the new communicationpattern after a rebalancing step. Again, a mechanism to assist with this process wouldadd value to a load balancing tool.5. Conclusions and Future Research Directions. For several reasons, dy-namic load balancing is fundamentally more complex than static load balancing. Un-like the static case, the software must be integrated into an application code and itmust run in parallel. Runtime is more critical since the cost of load balancing shouldnot outweigh the cost of running the application in an imbalanced state. And thegoal of moving only a small amount of data adds an additional dimension to thesolution space. Despite these challenges, a number of viable algorithms have beenproposed. In our opinion, the two classes of algorithms that are most attractive areincremental local methods and simple geometric approaches like RCB, but the graphpartition methods are worthy of consideration too. However, di�erent applicationshave di�erent properties, so there is a need for a range of algorithms that providedi�ering tradeo�s between runtime, partition quality and amount of data movement.No single approach will always be best.The plethora of proposed algorithms is contrasted by a shortage of widely usedsoftware. The principle reason for this shortage has to do with the complexity of inter-facing an application code with a load balancer. A number of interrelated issues mustbe addressed. What is the abstraction the balancer works with { a graph, a geometryor something else? Can the balancer work with the application data structures, ordoes it construct a new data structure? What are the load balancer's costs in timeand space? How complicated is the interface to the tool? How much assistance shouldthe load balancer provide for adjusting the application's data structures during andafter migration?Overcoming these problems will require careful design in a dynamic load balancingtool. In our opinion, the following features are important for such a tool.1. It should contain a variety of algorithms since none will be best in all situa-



Dynamic Load Balancing 17tions. Speci�cally, it should contain both geometrically-based algorithms andtopologically-based ones.2. The interfaces must be kept clean. An appealing way to achieve this objectiveis to use an object-oriented approach. This can signi�cantly simplify themigration to new applications. But it comes at a price in performance, sovery careful design is essential.3. Whenever possible, it should provide additional functionality such as deter-mination of when to load balance, establishment of new communication pat-terns, and assistance with data migration.With the increasing interest in parallel adaptive calculations, the need for a goodsolution to the dynamic load-balancing problem is becoming more acute. Our cur-rent work focuses on the software engineering issues involved in the design of a good,general purpose tool. This tool will be tested in a number of applications, includingadaptive �nite element methods, particle methods and contact detection. In addi-tion, by implementing several algorithms in the tool, objective comparison of variousalgorithms can be made in a way that, to date, has been unavailable on a large scale.Most of the research described in this paper was performed on MIMD computers.Much parallel computing, however, is moving toward clusters of distributed sharedmemory computers and heterogeneous computing systems. Load balancing on thesesystems is becoming an active area of research.A naive approach to load balancing on distributed shared memory systems is tosimply change the assignment of work to processors. The global address space ofthe machines can then locate data when needed by the application, thus skippingcomplicated data migration. However, since o�-processor memory references by theapplication are expensive, it is advantageous to actually move the assigned data to theprocessor's own memory. For performance reasons, then, the dynamic load-balancingproblem on distributed shared memory systems looks almost identical to that onMIMD computers.Heterogeneous computer systems, on the other hand, raise interesting issues fordynamic load balancing. The processors in these systems can have di�erent amountsof computing power and memory. This problem can, perhaps, be handled by askingthe load balancer for partitions of di�erent sizes, based on the speed and memorycapabilities of the target processors. In selecting objects for migration, performance-based load measures, such as execution time per object, can be weighted based on therelative performance of the potential exporting and importing processors. Anothercomplication is the possibility that network connections with di�erent speeds areused in heterogeneous systems. For example, high-speed connections may be usedwithin a cluster, while clusters are connected by low-speed links. This issue raises thecomplexity of forming subdomains that minimize the application's communicationcosts. Most scienti�c applications use communication to periodically update valuesalong the subdomain boundaries. Is it su�cient, then, to make the amount of datato be shared across low-speed links \small" so that the majority of communication isperformed over fast connections? If so, how small is su�ciently \small"? We expectthese, and related, questions to be active areas of study in the coming years.Acknowledgments. We are indebted to Steve Plimpton, Rob Leland and CarterEdwards for a number of stimulating conversations on the topics of this paper.REFERENCES
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