
Partitioning and Dynamic Load Balancing for

the Numerical Solution of Partial Differential

Equations

James D. Teresco1, Karen D. Devine2, and Joseph E. Flaherty3

1 Department of Computer Science, Williams College, Williamstown, MA 01267
USA terescoj@cs.williams.edu

2 Discrete Algorithms and Mathematics Department, Sandia National
Laboratories, Albuquerque, NM 87185 USA kddevin@sandia.gov

3 Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
12180 USA flaherje@cs.rpi.edu

Summary. In parallel simulations, partitioning and load-balancing algorithms
compute the distribution of application data and work to processors. The effective-
ness of this distribution greatly influences the performance of a parallel simulation.
Decompositions that balance processor loads while keeping the application’s com-
munication costs low are preferred. Although a wide variety of partitioning and
load-balancing algorithms have been developed, their effectiveness depends on the
characteristics of the application using them. In this chapter, we review several par-
titioning algorithms, along with their strengths and weaknesses for various PDE ap-
plications. We also discuss current efforts toward improving partitioning algorithms
for future applications and architectures.

The distribution of data among cooperating processes is a key factor in
the efficiency of parallel solution procedures for partial differential equations
(PDEs). This distribution requires a data-partitioning procedure and dis-
tributed data structures to realize and use the decomposition. In applications
with constant workloads, a static partition (or static load balance), computed
in a serial or parallel pre-processing step, can be used throughout the com-
putation. Other applications, such as adaptive finite element methods, have
workloads that are unpredictable or change during the computation, requir-
ing dynamic load balancers that adjust the decomposition as the computation
proceeds. Partitioning approaches attempt to distribute computational work
equally, while minimizing interprocessor communication costs. Communica-
tion costs are governed by the amount of data to be shared by cooperating
processes (communication volume) and the number of partitions sharing the
data (number of messages). Dynamic load-balancing procedures should also
operate in parallel on distributed data, execute quickly, and minimize data



2 Teresco, Devine and Flaherty

movement by making the new data distribution as similar as possible to the
existing one. The partitioning problem is defined in more detail in Section 1.
Numerous partitioning strategies have been developed. The various strate-

gies are distinguished by trade-offs between partition quality, amount of data
movement, and partitioning speed. Characteristics of an application (e.g.,
computation-to-communication ratio, cost of data movement, and frequency
of repartitioning) determine which strategies are most appropriate for it. For
example, geometric algorithms like recursive bisection and space-filling curve
partitioning provide high-speed, medium-quality decompositions that depend
only on geometric information (e.g., particles’ spatial coordinates, element
centroids). Graph-based algorithms provide higher quality decompositions
based on connectivity between application data, but at a higher cost. Several
strategies, with their relative trade-offs, are described in detail in Section 2
and Section 3.
Many partitioning procedures have been implemented directly in applica-

tions, using application-specific data structures. While this approach can pro-
vide high execution efficiency, it usually limits the application to a single pro-
cedure and burdens the application programmer with partitioning concerns.
A number of software libraries are available that provide high-quality im-
plementations of partitioning procedures, provide flexibility to switch among
available methods, and free the application programmer from those details.
Some of these software packages are described in Section 4.
While existing methods have been very successful, research challenges re-

main. New models, such as hypergraphs, can more accurately model communi-
cation. Multi-criteria partitioning can improve efficiency when different phases
of a computation have different costs. Resource-aware computation, achieved
by adjusting the partitioning or other parts of the computation according
to processing, memory and communication resources, is needed for efficient
execution on modern hierarchical and heterogeneous computer architectures.
Current research issues are explored further in Section 5.

1 The Partitioning and Dynamic Load Balancing

Problems

The most common approach to parallelizing PDE solution procedures assigns
portions of the computational domain to cooperating processes in a paral-
lel computation. Typically, one process is assigned to each processor. Data
are distributed among the processes, and each process computes the solution
on its local data (its subdomain). Inter-process communication provides data
that are needed by a process but “owned” by a different process. This model
introduces complications including (i) assigning data to subdomains (i.e., par-
titioning, or when the data is already distributed, dynamic load balancing),
(ii) constructing and maintaining distributed data structures that allow for
efficient data migration and access to data assigned to other processes, and



Partitioning and Dynamic Load Balancing 3

(iii) communicating the data as needed during the solution process. The focus
of this chapter is on the first issue: data partitioning.

1.1 The Partitioning Problem

The computational work of PDE simulation is often associated with certain
“objects” in the computation. For particle simulations, computation is as-
sociated with the individual particles; adjusting the distribution of particles
among processors changes the processor load balance. For mesh-based appli-
cations, work is associated with the entities of the mesh — elements, surfaces,
nodes — and decompositions can be computed with respect to any of these
entities or to a combination of entities (e.g., nodes and elements). The par-
titioning problem, then, is the division of objects into groups or subdomains
that are assigned to cooperating processes in a parallel computation.
At its simplest, a partitioning algorithm attempts to assign equal numbers

of objects to partitions while minimizing communication costs between parti-
tions. A partition’s subdomain, then, consists of the data uniquely assigned to
the partition; the union of subdomains is equal to the entire problem domain.
For example, Figure 1 shows a two-dimensional mesh whose elements are di-
vided into four subdomains. Often communication between partitions consists
of exchanges of solution data for adjacent objects that are assigned to different
partitions. For example, in finite element simulations, “ghost elements” repre-
senting element data needed by but not assigned to a subdomain are updated
via communication with neighboring subdomains. While this data distribu-
tion is the most commonly used one for parallelization of PDE applications
(and, indeed, will be assumed without loss of generality in the rest of this
chapter), other data layouts are possible. In Mitchell’s full-domain partition
(FuDoP) [77], for example, each process is assigned a disjoint subdomain of
a refined mesh. Then within each process, a much coarser mesh is generated
for the rest of the problem domain, giving each process a view of the entire
domain. This layout reduces the amount of communication needed to update
subdomain boundary values during adaptive multigrid, at the cost of extra
degrees of freedom and computation. A similar idea has been applied to par-
allel solution procedures by Bank and Holst to reduce communication costs
for elliptic problems [3].
Objects may have weights proportional to the computational costs of the

objects. These nonuniform costs may result from, e.g., variances in compu-
tation time due to different physics being solved on different objects, more
degrees of freedom per element in adaptive p-refinement [1, 105], or more
small time steps taken on smaller elements to enforce timestep contraints
in local mesh-refinement methods [42]. Similarly, nonuniform communication
costs may be modeled by assigning weights to connections between objects.
Partitioning then has the goal of assigning equal total object weight to each
subdomain while minimizing the weighted communication cost.



4 Teresco, Devine and Flaherty

Subdomain 4

Subdomain 2

Subdomain 1 Subdomain 3

Fig. 1. An example of a two-dimensional mesh (left) and a decomposition of the
mesh into four subdomains (right).

1.2 Dynamic Repartitioning and Load Balancing Problem

Workloads in dynamic computations evolve in time, so a partitioning ap-
proach that works well for a static problem or for a slowly-changing problem
may not be efficient in a highly dynamic computation. For example, in finite
element methods with adaptive mesh refinement, process workloads can vary
dramatically as elements are added and/or removed from the mesh. Dynamic
repartitioning of mesh data, often called dynamic load balancing, becomes
necessary.
Dynamic repartitioning is also needed to maintain geometric locality in ap-

plications like crash simulations and particle methods. In crash simulations,
for example, high parallel efficiency is obtained when subdomains are con-
structed of geometrically close elements [96]. Similarly, in particle methods,
particles are influenced by physically near particles more than by distant ones;
assigning particles to processes based on their geometric proximity to other
particles reduces the amount of communication needed to compute particle
interactions.
Dynamic load balancing has the same goals as partitioning, but with the

additional constraints that procedures (i) must operate in parallel on already
distributed data, (ii) must execute quickly, as dynamic load balancing may
be performed frequently, and (iii) should be incremental (i.e., small changes
in workloads produce only small changes in the decomposition) as the cost
of redistribution of mesh data is often the most significant part of a dynamic
load-balancing step. While a more expensive procedure may produce a higher-
quality result, it is sometimes better to use a faster procedure to obtain a
lower-quality decomposition, if the workloads are likely to change again after
a short time.



Partitioning and Dynamic Load Balancing 5

1.3 Partition Quality Assessment

The goal of partitioning is to minimize time to solution for the corresponding
PDE solver. A number of statistics may be computed about a decomposition
that can indicate its suitability for use in an application.
The most obvious measure of partition quality is computational load bal-

ance. Assigning the same amount of work to each processor is necessary to
avoid idle time on some processors. The most accurate way to measure imbal-
ance is by instrumenting software to determine processor idle times. However,
imbalance is often reported with respect to the number of objects assigned
to each subdomain (or the sum of object weights, in the case of non-uniform
object computation costs).
Computational load balance alone does not ensure efficient parallel com-

putation. Communication costs must also be considered. This task often cor-
responds to minimizing the number of objects on sharing data across subdo-
main boundaries, since the number of adjacencies on the bounding surface of
each subdomain approximates the amount of local data that must be commu-
nicated to perform a computation. For example, in element decompositions
of mesh-based applications, this communication cost is often approximated
by the number of element faces on boundaries between two or more subdo-
mains. (In graph partitioning, this metric is referred to as “edge cuts”; see
Section 2.2.) A similar metric is a subdomain’s surface index, the percentage
of all element faces within a subdomain that lie on the subdomain bound-
ary. Two variations on the surface index can be used to estimate the cost of
interprocess communication. The maximum local surface index is the largest
surface index over all subdomains, and the global surface index measures the
percentage of all element faces that are on subdomain boundaries [14]. In
three dimensions, the surface indices can be thought of as surface-to-volume
ratios if the concepts of surface and volume are expanded beyond conventional
notions; i.e., the “volume” is the whole of a subdomain, and the elements on
subdomain boundaries are considered the “surface.” The global surface in-
dex approximates the total communication volume, while the maximum local
surface index approximates the maximum communication needed by any one
subdomain.
A number of people [14, 50, 111] have pointed out flaws in minimizing

only the edge cut or global surface index statistics. First, the number of faces
shared by subdomains is not necessarily equal to the communication volume
between the subdomains [50]; an element could easily share two or more faces
with elements in a neighboring subdomain, but the element’s data would be
communicated only once to the neighbor (Figure 2). Second, interconnec-
tion network latency is often a significant component of communication cost;
therefore, interprocess connectivity (the number of processes with which each
process must exchange information during the solution phase) can be as sig-
nificant a factor in performance [14] as the total volume of communication.
Third, communication should be balanced, not necessarily minimized [95]. A



6 Teresco, Devine and Flaherty

*

Fig. 2. Example where the number of elements on the subdomain boundary is
not an accurate measure of communication costs. The shading indicates subdomain
assignments. The element indicated by “*” needs to send its value to two neighbors
in the other subdomain, but the value need only be communicated once.

balanced communication load often corresponds to a small maximum local
surface index.
Another measure of partition quality is the internal connectivity of the

subdomains. Having multiple disjoint connected components within a subdo-
main (also known as subdomain splitting [57]) can be undesirable. Domain
decomposition methods for the solution of the linear systems will converge
slowly for partitions with this property [25, 38]. Additionally, if a relatively
small disjoint part of one subdomain can be merged into a neighboring subdo-
main, the boundary size will decrease, thereby improving the surface indices.
Subdomain aspect ratio has also been reported as an important factor in

partition quality [32, 38], particularly when iterative methods such as Conju-
gate Gradient (CG) or Multigrid are used to solve the linear systems. Diek-
mann, et al. [32] provide several definitions of subdomain aspect ratio, the
most useful being the ratio of the square of the radius of smallest circle that
contains the entire subdomain to the subdomain’s area. They show that the
number of iterations needed for a preconditioned CG procedure grows with
the subdomain aspect ratio. Furthermore, large aspect ratios are likely to lead
to larger boundary sizes.
Geometric locality of elements is an important indicator of partition effec-

tiveness for some applications. While mesh connectivity provides a reasonable
approximation to geometric locality in some simulations, it does not represent
geometric locality in all simulations. (In a simulation of an automobile crash,
for example, the windshield and bumper are far apart in the mesh, but can
be quite close together geometrically.) Geometric locality is also important in
particle methods, where a natural representation of connectivity is not often
available. Quality metrics based on connectivity are not appropriate for these
types of simulations.



Partitioning and Dynamic Load Balancing 7

2 Partitioning and Dynamic Load Balancing Taxonomy

A variety of partitioning and dynamic load balancing procedures have been
developed. Since no single procedure is ideal in all situations, many of these al-
ternatives are commonly used. This section describes many of the approaches,
grouping them into geometric methods, global graph-based methods, and lo-
cal graph-based methods. Geometric methods examine only coordinates of
the objects to be partitioned. Graph-based methods use the topological con-
nections among the objects. Most geometric or graph-based methods operate
as global partitioners or repartitioners. Local graph-based methods, however,
operate among neighborhoods of processes in an existing decomposition to im-
prove load balance. This section describes the methods; their relative merits
are discussed in Section 3.

2.1 Geometric Methods

Geometric methods are partitioners that use only objects’ spatial coordinates
and objects’ computational weights in computing a decomposition. For exam-
ple, in mesh partitioning, any mesh entities’ coordinates (e.g., nodal coordi-
nates, element centroids, surface element centroids) can be used. Geometric
methods assign objects that are physically close to each other to the same
partition in a way that balances the total weight of objects assigned to each
partition. This goal is particularly effective for applications in which objects
interact only if they are geometrically close to each other, as in particle meth-
ods and crash simulations.

Recursive Bisection

Recursive bisection methods divide the simulation’s objects into two equally
weighted sets; the bisection algorithm is then applied to each set until the
number of sets is equal to the number of desired partitions. (This description
implies that the number of partitions must be a power of two; however, only
minor changes in the algorithm are needed to allow an arbitrary number of
partitions.)
Perhaps the most well-known geometric bisection method is Recursive Co-

ordinate Bisection (RCB), developed by Berger and Bokhari [9]. In RCB, two
sets are computed by cutting the problem geometry with a plane orthogonal
to a coordinate axis (see Figure 3, left). The plane’s direction is selected to be
orthogonal to the longest direction of the geometry; its position is computed
so that half of the object weight is on each side of the plane. In a twist on
RCB, Jones’ and Plassmann’s Unbalanced Recursive Bisection (URB) algo-
rithm [61] halves the problem geometry (instead of the set of objects) and
then assigns processes to each half proportionally to the total object weight
within the half.



8 Teresco, Devine and Flaherty

Cut 2

Cut 2

Cut 1

Cut 1

Cut 2

Cut 2

Fig. 3. Example of RCB cuts along coordinate axes (left) and RIB cuts along the
principal axis of inertia (right).

Like RCB, Recursive Inertial Bisection (RIB) [107, 113] uses cutting planes
to bisect the geometry. In RIB, however, the direction of the plane is computed
to be orthogonal to long directions in the actual geometry, rather than to a
coordinate axis (see Figure 3, right). Treating objects as point masses, the di-
rection of principle inertia in the geometry is found by computing eigenvectors
of a 3× 3 matrix assembled from the point masses.

Space-Filling Curves

A second class of geometric partitioners utilizes a one-dimensional “traversal”
or linearization to order objects or groups of objects. After determining a
one-dimensional ordering, subdomains are formed from contiguous segments
of the linearization. This technique produces well-formed subdomains if the
ordering preserves locality, i.e., if objects that are close in the linearization are
also close in the original coordinate space.
The linearization is often achieved using space-filling curves (SFCs).

SFCs provide continuous mappings from one-dimensional to d-dimensional
space [99]. They have been used to linearize spatially-distributed data for
partitioning [2, 17, 33, 88, 89, 94], storage and memory management [22, 79],
and computational geometry [7].
SFCs are typically constructed recursively from a single stencil. Each level

of refinement replaces segments of the SFC with a new copy of the curve’s
stencil, subject to spatial rotations and reflections. The SFC can come arbi-
trarily close to any point in space. Most importantly for partitioning, some
SFCs preserve locality, which Edwards [33] defines formally. Several order-
ings with different degrees of complexity and locality are possible; only the
commonly-used Morton and Hilbert orderings are included here.
The Morton (Z-code or Peano) ordering [80, 84] is a simple SFC that

traverses a quadrant’s children in a “Z”-like pattern (in the order I, II, III,
IV in Figure 4). The pattern at each refinement is identical to that used by
its ancestors; no rotations or reflections are performed. However, there are



Partitioning and Dynamic Load Balancing 9

I

IIIIV

II

Fig. 4. Template curve for the Morton ordering (left), its first level of refinement
(center), and an adaptive refinement (right).

large “jumps” in its linearization, particularly as the curve transitions from
quadrant II to quadrant III, so Morton ordering does not always preserve
locality. The jumps are even more apparent in three dimensions. Nevertheless,
because of its simplicity, Morton ordering is viable in some circumstances, and
provides a base ordering for all SFCs [17, 60].

II I

IIIIV

Fig. 5. Template curve for the Hilbert ordering (left), its first level of refinement
(center), and an adaptive refinement (right).

The Hilbert ordering uses the Peano-Hilbert SFC [11, 90, 91] to order
quadrants. It uses a bracket-like template with rotations and inversions to
keep quadrants closer to their neighbors. (Figure 5). Hilbert ordering is locality
preserving, and tends to be the most useful for partitioning.
SFC orderings can be applied directly to objects given only the objects’

spatial coordinates [2]. Each object is assigned a unique “key” representing the
object’s position along the SFC. This key is a number in the range [0, 1] that
specifies the point on the SFC that passes closest to the object. The object
are then ordered by their keys; this ordering can be done via global sorting,
binning [8, 27, 29], or traversing an octree representing the SFC [17, 42, 44,
71, 75]. The one-dimensional ordering is then partitioned into appropriately
sized pieces; all objects within a piece are assigned to one subdomain.



10 Teresco, Devine and Flaherty

SFC partitioning was first used by Warren and Salmon [127] in particle-
based gravitational simulations. They used a Morton ordering, but acknowl-
edged that Hilbert ordering would improve locality. Patra and Oden [81, 89],
Parashar and Browne [88], and Edwards [33] used Hilbert SFC ordering for
finite element meshes. Patra and Oden choose cuts along the SFC to bal-
ance computational work in their hp-adaptive computation. Pilkington and
Baden [94] apply SFCs for dynamic load balancing with a uniform mesh where
computational workloads vary. Steensland, et al. [111] looked at SFCs for
partitioning structured grids which undergo adaptive refinement. Octree par-
titioning [42, 71, 75] implements SFC partitioning using octree data struc-
tures commonly used in mesh generation. Mitchell’s Refinement Tree parti-
tioning [76, 78] uses nodal connectivity in adaptively refined meshes (instead
of coordinate values) to generate a SFC through mesh elements; while this
approach is not strictly a geometric method, the resulting decompositions are
qualitatively identical to SFC-produced decompositions.

2.2 Global Graph-Based Partitioning

A popular and powerful class of partitioning procedures make use of connec-
tivity information rather than spatial coordinates. These methods use the fact
that the partitioning problem in Section 1.1 can be viewed as the partitioning
of an induced graph G = (V,E), where objects serve as the graph vertices
(V ) and connections between objects are the graph edges (E). For example,
Figure 6 shows an induced graph for the mesh in Figure 1; here, elements are
the objects to be partitioned and, thus, serve as vertices in the graph, while
shared element faces define graph edges.

Fig. 6. Example two-dimensional mesh from Figure 1 (left) with its induced graph.

A k-way partition of the graph G is obtained by dividing the vertices
into subsets V1, ..., Vk, where V = V1 ∪ ... ∪ Vk, and Vi ∩ Vj = ® for i 6=



Partitioning and Dynamic Load Balancing 11

Subset V4

Subset V3

Subset V2

Subset V1

Fig. 7. Four-way partitioning of the graph from Figure 6.

j. Figure 7 shows one possible decomposition of the graph induced by the
mesh in Figure 6. Vertices and edges may have weights associated with them
representing computation and communication costs, respectively. The goal of
graph partitioning, then, is to create subsets Vk with equal vertex weights
while minimizing the weight of edges “cut” by subset boundaries. An edge eij

between vertices vi and vj is cut when vi belongs to one subset and vj belongs
to a different one. In Figure 7, eight edges are cut. Algorithms to provide
an optimal partitioning are NP-complete [46, 47], so heuristic algorithms are
generally used. The graph partitioning is related back to the mesh partitioning
problem by creating subdomains of the mesh corresponding to each subset
Vi. Figure 1 (right) shows the partitioning of the mesh based on the graph
partitioning of Figure 7.
A number of algorithms have been developed to partition graphs. Many of

these were developed as static partitioners, intended for use as a preprocessing
step rather than as a dynamic load balancing procedure. Some of the multilevel
procedures do operate in parallel and can be used for dynamic load balancing.

Greedy Partitioning

Farhat [36] applied graph partitioning to the mesh partitioning problem. The
graph is partitioned by a greedy algorithm (GR) that builds each subdomain
by starting with a vertex and adding adjacent vertices until the subdomain’s
target size has been reached. The procedure then chooses another unassigned
vertex and builds the next subdomain. Farhat [38] reports success using these
procedures. Such greedy procedures can also be components of the more com-
monly used multilevel partitioners described below.



12 Teresco, Devine and Flaherty

8

2

4

6

5

3

7

1

Fig. 8. Example greedy partitioning of a small mesh. Numbers indicate the order
in which elements are added to the subdomain being constructed.

Spectral Partitioning

A very well known static graph partitioning method is Recursive Spectral
Bisection (RSB) [97, 107]. In RSB, the Laplacian matrix L of a graph is
constructed. Each diagonal entry lii is the degree of vertex i; non-diagonal
entries lij are -1 if edge eij exists in the graph, and 0 otherwise. The eigenvector
x associated with the smallest non-zero eigenvalue of L is then used to divide
the vertices into two sets. The median value of x is found. Then, for each xi,
if xi is less than the median, vertex i is assigned to the first set; otherwise,
it is assigned to the second set. This bisection procedure is repeated on the
subgraphs until the number of sets is equal to the number of desired partitions.
RSB generally produces high quality partitions. The eigenvector calcula-

tion, however, is very expensive and, thus, RSB is used primarily for static
partitioning. Strategies using additional eigenvectors to compute four or eight
partitions in each stage have proven to be effective while reducing the cost to
partition [54].

Multilevel Partitioning

By far, the most successful global graph-based algorithms for static partition-
ing are multilevel graph partitioners [15, 55, 66], as evidenced by the number
of static graph partitioning packages available [53, 65, 92, 98]. Multilevel meth-
ods’ operation is much like the V-cycle used in multigrid solvers, in that an
initial solution is computed on a coarse representation of the graph and used
to obtain better solutions on finer representations.
Multilevel graph partitioning involves three major phases: (i) coarsening,

the construction of a sequence of smaller graphs that approximate the original,
(ii) partitioning of the coarsest graph, and (iii) uncoarsening, the projection
of the partitioning of the coarsest graph onto the finer graphs, with a local
optimization applied to improve the partitioning at each step. A simple exam-
ple of this procedure for a small graph with two levels of coarsening is shown
in Figure 9.



Partitioning and Dynamic Load Balancing 13

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

1

1

1

1

1

1

1

1

11

1

1

1

1
1 1

11

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1

1

1

1

1

1

1

1
11

1

1

1

1
1 1

1

1

1

1

(a) (b) (c)

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

4 3

4

3

3

2

3 4

1

1

2

1

2

1

2

1
1

2

1

1

1

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

4 3

4

3

3

2

3 4

1

1

2

1

2

1

2

1
1

2

1

1

1

1

2

2

2

2

1
2

2

2

2 1

2

1

2

2

1

1

1

1
1

1

1

1

1

1

1

1

1

11

1

1

1

1
1 1

11

(d) (e) (f)

(g)

Fig. 9. Multilevel partitioning of the induced graph of Figure 6. Vertex matching
in (a) leads to the coarse graph in (b). A second round of vertex matching in (c)
produces the coarse graph in (d). This coarsest graph is partitioned in (e). The
graph is uncoarsened one level and the partitioning is optimized in (f). The second
level of uncoarsening, and another round of local optimization on this partitioning
produces the final two-way partitioning shown in (g).

Coarsening procedures typically use a vertex matching algorithm that
identifies vertices that can be combined to create coarse vertices. The set
of edges from the coarse vertex is taken as the union of the edges for the
combined vertices. The sum of the combined vertices’ weights is used as the
coarse vertex’s weight. In this way, the structure and workloads of the input
graph are preserved in the coarse representations. Matching at each level can
be done by randomly selecting unmatched vertices [15, 55, 66, 124] or using
heuristics [6, 23, 45, 48, 49, 66]. For example, heavy-edge matching combines
the two vertices sharing the edge with the heaviest edge weight [66], sug-



14 Teresco, Devine and Flaherty

gesting that vertices with the strongest affinity toward each other should be
combined.
The coarsest graph is then partitioned. Since this graph is small, a spec-

tral method [55, 66] can be used efficiently. Faster greedy methods [66] can
also be used; while they produce lower quality coarse partitions, local opti-
mizations during the uncoarsening phase improve partition quality. A local
optimization may also be used at this point to attempt to encourage incre-
mentality [103]. A geometric procedure such as an SFC may also be used for
this coarse partitioning [68].
The coarse decomposition is projected to the finer graphs, with refinements

of the partitions made at each graph level. Typically a local optimization
technique reduces a communication metric while maintaining and improving
load balance. Most of the local optimization approaches are based on the
Kernighan-Lin (KL) graph bisection algorithm [69] or its linear-time imple-
mentation by Fiduccia and Maytheses (FM) [39]. These techniques make a
series of vertex moves from one partition to another, measuring the “gain” or
improvement in the metric for each move; moves with high gain are accepted.
Karypis and Kumar [66] perform only a few iterations of their KL-like proce-
dure, noting that most of the gain is usually achieved by the first iteration.
Hendrickson and Leland [55] continue their KL-like procedure to allow for the
discovery of sequences of moves that, while individually making the decom-
position worse, may lead to a net improvement. This allows the procedure to
escape from local minima. Walshaw, et al. [124] define a relative gain value
for each vertex, intended to avoid collisions (i.e., vertices on opposite sides of
a boundary each being selected to move).
Parallel implementation of multilevel graph partitioners has allowed them

to be used for dynamic load balancing [67, 124]. These methods produce
very high quality partitionings, but at a higher cost than geometric methods.
Graph partitioners are not inherently incremental, but modifications such as
the local methods described below can make them more effective for dynamic
repartitioning.

2.3 Local Graph-based Methods

In an adaptive computation, dynamic load balancing may be required fre-
quently. Applying global partitioning strategies after each adaptive step can
be costly relative to solution time. Thus, a number of dynamic load balanc-
ing techniques that are intended to be fast and incrementally migrate data
from heavily to lightly loaded processes have been developed. These are often
referred to as local methods.
Unlike global partitioning methods, local methods work with only a limited

view of the application workloads. They consider workloads within small,
overlapping sets of processors to improve balance within each set. Heavily
loaded processors within a set transfer objects to less heavily loaded processors
in the same set. Sets can be defined by the parallel architecture’s processor



Partitioning and Dynamic Load Balancing 15

connectivity [70] or by the connectivity of the application data [58, 130]. Sets
overlap, allowing objects to move between sets through several iterations of
the local method. Thus, when only small changes in application workloads
occur through, say, adaptive refinement, a few iterations of a local method
can correct imbalances while keeping the amount of data migrated low. For
dramatic changes in application workloads, however, many iterations of a
local method are needed to correct load imbalances; in such cases, invocation
of a global partitioning method may result in a better, more cost-effective
decomposition.
Local methods typically consist of two steps: (i) computing a map of how

much work (nodal weight) must be shifted from heavily loaded to lightly
loaded processors, and (ii) selecting objects (nodes) that should be moved to
satisfy that map. Many different strategies can be used for each step.
Most strategies for computing a map of the amount of data to be shifted

among processes are based on the diffusive algorithm of Cybenko [24]. Using
processor connectivity or application communication patterns to describe a
computational “mesh,” an equation representing the workflow is solved using
a first-order finite-difference scheme. Since the stencil of the scheme is compact
(using information only from neighboring processes), the method is local.
Several variations of this strategy have been developed to reduce data

movement or improve convergence. Hu and Blake [58] take a more global view
of load distributions, computing a diffusion solution while minimizing work
flow over edges of a graph of the processes. Their method is used in several
parallel graph-partitioning libraries [100, 124]. Such diffusion methods have
been coupled with multilevel graph partitioners (see Section 2.2) to further
improve their effectiveness [56, 100, 103, 123, 124].
Other techniques for accelerating the convergence of diffusion schemes in-

clude use of higher-order finite difference schemes and dimensional exchange.
Watts, et al. [128, 129] use a second-order implicit finite difference scheme to
solve the diffusion equation; this scheme converges to global balance in fewer
iterations, but requires more work and communication per iteration. In dimen-
sional exchange [24, 31, 132, 134], a hypercube architecture is assumed. (The
algorithm can be used on other architectures by logically mapping the archi-
tecture to a hypercube.) Processes exchange work with neighbors along each
dimension of the hypercube; after looping over all dimensions, the workloads
are balanced.
Demand-driven models are also common [26, 34, 70, 86, 130, 131, 132].

These models operate in either of two ways: (i) underloaded processes re-
quest work from their overloaded neighboring processes, or (ii) overloaded
processes send work to their underloaded neighbors. The result is similar to
diffusion algorithms, except that nodes are transferred to only a subset of
neighbors rather than distributed to all neighbors. Version (i) of this model
has shown to be more effective than (ii), as the majority of load-balancing
work is performed by the underloaded process and overloading of the receiv-
ing process is avoided [132]. As in the diffusion algorithm, neighbors can be



16 Teresco, Devine and Flaherty

defined by following the physical processor network [70] or the logical data
connections [131]. Ozturan’s iterative tree-balancing procedure [26, 86] groups
processes into trees based upon their work requests, moving work among pro-
cesses within trees. This more global view accelerates the convergence of the
diffusion, but also increases the average number of neighboring processes per
process in the application’s communication graph.
The second step of a local method is deciding which objects (graph

nodes) to move to satisfy the workload transfers computed in the first step.
Typically, variants of the KL [69] or FM [39] local optimization algorithms
(used for refinement of multilevel partitions) are used. For each object, the
gain toward a specific goal achieved by transferring the object to another
process is computed. Many options for the gain function have been used
(e.g., [28, 55, 124, 131, 134]). Most commonly, the weight of graph edges cut
by subdomain boundaries is minimized. However, other goals might include
minimizing the amount of data migrated [28, 100], minimizing the number of
process neighbors, optimizing subdomain shape [30, 118], or some combina-
tion of these goals. The set of objects producing the highest gain is selected for
migration. Selection continues until the actual workload transferred is roughly
equal to the desired workload transfers.

3 Algorithm Comparisons

A number of theoretical and empirical comparisons of various partitioning
strategies have been performed [14, 27, 37, 38, 41, 51, 57, 111, 112, 115]. Se-
lection of the method that is most effective for an application depends on
trade-offs between incrementality, speed and quality that can be tolerated by
the application. A PDE solver which uses a single decomposition throughout
the computation should consider strategies that produce high-quality parti-
tions, with less concern for execution speed of the partitioner. A solver which
uses frequent adaptivity will want to consider strategies that execute quickly
and are incremental, with less emphasis on partition quality. A procedure
which does not readily provide adjacency information will be restricted to
geometric methods. This section summarizes and cites key results.

• RCB, URB

– Geometric method: only coordinate information needed.
– Incremental and suitable for dynamic load balancing [51].
– Executes very quickly [115].
– Moderate quality decompositions. Cutting planes help keep the number
of objects on subdomain boundaries small for well-shaped meshes [18].
Unfortunate cuts through highly refined regions [115] or complex do-
main geometry [75, 73] can lead to poor decompositions. URB produces
more uniform subdomain aspect ratios than RCB when there is a large
variation in object density [61].



Partitioning and Dynamic Load Balancing 17

– Conceptually simple; straightforward to implement in parallel [29].
– Maintains geometric locality [51, 122].
– Simple to determine intersections of objects with subdomains, e.g.,
for parallel contact detection and smoothed particle hydrodynamics
simulations [96]; subdomains are described by simple parallelepipeds.

• RIB
– Geometric method: only coordinate information needed.
– Not incremental; may be unsuitable for dynamic load balancing [42].
– Executes almost as quickly as RCB [115].
– Slightly higher quality decompositions than RCB; lower quality than
spectral and multilevel graph partitioning [38, 115]. Unfortunate cuts
through highly refined regions can cause poor decompositions [115].

– Conceptually simple; straightforward to implement in parallel [29, 106].
– Maintains geometric locality.
– Simple to determine intersections of objects with subdomains, e.g.,
for parallel contact detection and smoothed particle hydrodynamics
simulations [96].

• SFC
– Geometric method: only coordinate information needed.
– Incremental and suitable for dynamic load balancing [42, 51].
– Executes very quickly [42, 94, 112].
– Slightly lower quality decompositions than geometric bisection meth-
ods [89].

– Conceptually simple; straightforward to implement in parallel [94].
– Choice of SFC used depends on locality requirements; Hilbert is usually
best [17].

– The global ordering induced by sorting SFC keys can be exploited
to order data to improve cache performance during computation, and
can provide automated translations between global and per-process
numbering schemes [33, 87].

– Possible to determine intersections of objects with subdomains, e.g.,
for parallel contact detection and smoothed particle hydrodynamics
simulations [27].

• Greedy partitioning

– Graph-based method: connectivity information is required.
– Not incremental; may be unsuitable for dynamic load balancing.
– Executes quickly [38, 118, 122, 123].
– Medium-quality decompositions [122], better than RIB [38], and good
with respect to subdomain aspect ratio [38]. Tends to leave non-
connected or stripwise subdomains in the last few partitions com-
puted [57].

– Difficult to implement in parallel.
– Does not maintain geometric locality [122].

• Spectral graph partitioning



18 Teresco, Devine and Flaherty

– Graph-based method: connectivity information is required.
– Not incremental; may be unsuitable for dynamic load balancing [112].
Van Driessche and Roose [117] developed modifications to include in-
crementality.

– Executes very slowly [123].
– Very high quality decompositions [123].
– More difficult to parallelize than geometric methods [5, 109].
– Does not maintain geometric locality [122].
– Suitable primarily for static partitioning.

• Multilevel graph partitioning
– Graph-based method: connectivity information is required.
– Not incremental; may be unsuitable for dynamic load balancing [122].
Metrics may include migration cost to improve incrementality [103].

– Executes slowly [115, 123].
– Very high quality decompositions [67, 124].
– Difficult to implement in parallel [67].
– Does not maintain geometric locality.

• Local graph-based methods
– Graph-based method: connectivity information is required.
– Incremental; suitable for dynamic load balancing [26, 86].
– Usually execute quickly, but several iterations may be needed for
global balance. Also, more sophisticated techniques can be more ex-
pensive [112].

– High quality decompositions, given a good starting decomposition.
– Straightforward to implement in parallel [26, 86]; can be incorporated
into multilevel strategies [55, 67, 124].

– Useful as a post-processing step for other methods to improve partition
quality [42, 75].

4 Software

Many software packages are available to provide static and dynamic load bal-
ancing to applications. Using these packages, application developers can access
a variety of high-quality implementations of partitioning algorithms. Many
packages also include supporting functionality (e.g., data migration tools and
unstructured communication tools) commonly needed by applications using
load balancing. Use of these packages saves application developers the effort of
learning and implementing partitioning algorithms themselves, while allowing
them to compare partitioning strategies within their applications. Moreover,
many of the packages are available as open-source software; see bibliography
entries for the packages cited for distribution details.
Static partitioning software is typically used as a pre-processor to the ap-

plication. It can be used in two ways: as a stand-alone tool or as a function call
from the application. In stand-alone mode, input files describe the problem



Partitioning and Dynamic Load Balancing 19

domain to be partitioned; the format of these files is determined by the par-
titioning software. The computed decomposition is also written to files. The
application must then read the decomposition files to distribute data appro-
priately. Function-call interfaces to static partitioners allow them to be called
directly by applications during pre-processing phases of the application.
Several graph partitioning packages have been developed for static load

balancing; they include Chaco [53], Metis [65], Jostle [126], Party [98] and
Scotch [93]. These tools run in serial and have both stand-alone and function
interfaces. For the stand-alone mode, users provide input files describing the
problem domain in terms of a graph, listing vertices (objects), edges between
vertices, vertex and edge weights, and possibly coordinates. The function-call
interfaces accept a graph description of the problem through arrays using
compressed sparse row (CSR) format. In both modes, applications have to
convert their application data into the appropriate graph format.
By necessity, dynamic load-balancing software uses function call inter-

faces, as file-based interfaces would be unacceptable for balancing during a
computation. Similarly, dynamic load-balancing software is executed in par-
allel, assuming an existing distribution of data; parallel execution is required
to maintain scalability of the application. Two types of dynamic partitioning
software are available: algorithm-specific libraries and toolkits of partitioning
utilities.
ParMETIS [68] and PJostle [126] are two widely used algorithm-specific

libraries. Both provide multi-level and diffusive graph partitioning. Like their
serial counterparts, they accept input in CSR format, with extensions describ-
ing the existing partition assignment of the vertices; the arrays describing the
application data as a graph in this compressed format must be built by the
application. ParMETIS includes support for multiple weights per vertex [63]
and edge [101], enabling multi-constraint and multi-objective partitioning (see
Section 5.2). PJostle allows multiple vertex weights for multiphase applica-
tions [125] (see Section 5.2) and a network description [121] to allow parti-
tioning for heterogeneous computing systems (see Section 5.3).
Load-balancing toolkits such as Zoltan [29] and DRAMA [72] incorporate

suites of load-balancing algorithms with additional functionality commonly
needed by dynamic applications. Both Zoltan and DRAMA include geometric
partitioners (through implementations in the toolkits) and graph-based parti-
tioners (through interfaces to ParMETIS and PJostle). They enable compar-
isons of various methods by providing a common interface for all partitioners
and allowing applications to select a method via a single parameter. They
also provide support for moving data between processors to establish a new
decomposition.
The Zoltan toolkit [29] provides parallel dynamic load balancing and data

management services to a wide range of applications, including particle sim-
ulations, mesh-based simulations, circuit simulations, and linear solvers. It
includes geometric bisections methods (RCB, RIB), space-filling curve meth-
ods (HSFC, Octree, Refinement Tree), and graph-based partitioning (through



20 Teresco, Devine and Flaherty

ParMETIS and PJostle). Unlike the graph-partitioning libraries, Zoltan’s de-
sign is “data-structure neutral”; i.e., Zoltan does not require the application to
use or build particular data structures for Zoltan. Instead, a callback-function
interface provides a simple, general way for applications to provide data to
Zoltan. Applications provide simple functions returning, e.g., lists of objects
to be partitioned, coordinates for the objects, and relationships between ob-
jects. Zoltan calls these functions to obtain application information needed
to build its data structures. Once an application implements these callback
functions, switching between load-balancing methods requires changing only
one parameter.
Zoltan also includes a number of utilities that simplify development of dy-

namic applications. Its data migration tools assist in the movement of data
among processors as they move from an old decomposition to a new one. Be-
cause Zoltan does not have information about application data structures, it
cannot update them during migration. But given callback functions that pack
and unpack data from communication buffers, its migration tools perform all
communication needed for data migration. Zoltan’s unstructured communica-
tion package provides a simple mechanism for complex communication among
processors, freeing application developers from the details of individual mes-
sage sends and receives. Its distributed data directory provides an efficient,
scalable utility for locating data in the memory space of other processes. Key
kernels of contact detection simulations—finding the partitions owning points
and regions in space—are included for Zoltan’s geometric and HSFC methods.
The DRAMA (Dynamic Re-Allocation of Meshes for parallel finite element

Applications) toolkit [72] provides parallel dynamic load balancing and sup-
port services to mesh-based applications. DRAMA assumes a basic data struc-
ture of a mesh and enables partitioning of the mesh nodes, elements or both.
The mesh is input to DRAMA through array-based arguments. Like Zoltan,
DRAMA provides a number of partitioning strategies, including recursive bi-
section methods and graph partitioning through interfaces to ParMETIS and
PJostle.
DRAMA includes a robust cost-model for use in partitioning. This model

accounts for both computation and communication costs in determining ef-
fective decompositions. Because it assumes a mesh data structure, DRAMA
includes more sophisticated support for data migration than Zoltan. It mi-
grates its input mesh to its new location; this migrated mesh can then serve
as a starting point for the application data migration. DRAMA provides sup-
port for heterogeneous computing architectures through PJostle’s network de-
scription [120] (see Section 5.3). It also includes extensive support for contact
detection and crash simulations.
Load-balancing tools that are tied more closely to specific applications also

exist. For example, the PLUM system [82] provides dynamic load balancing
for applications using adaptively refined meshes. Its goal is to minimize load-
balancing overhead during adaptive computations. To do so, it balances with
respect to a coarse mesh in the adaptive simulation using element weights pro-



Partitioning and Dynamic Load Balancing 21

portional to the number of elements into which each coarse element has been
refined. It uses an external partitioning library (e.g., ParMETIS) to compute
a decomposition, and then uses a similarity matrix to remap partitions in a
way that minimizes data movement between the old and new decompositions.
Another example, the VAMPIRE library [110], produces decompositions for
structured adaptive mesh refinement applications. Assuming the refined mesh
is represented as a tree of uniform grids, it uses a SFC algorithm to distribute
the grids to processors to evenly distribute work while attempting to minimize
communication between the grids. Load-balancing systems are also included
as parts of larger parallel run-time systems; see, e.g., CHARM++ [62] and
PREMA [4].

5 Current Challenges

As parallel simulations and environments become more sophisticated, par-
titioning algorithms must address new issues and application requirements.
Software design that allows algorithms to be compared and reused is an im-
portant first step; carefully designed libraries that support many applications
benefit application developers while serving as test-beds for algorithmic re-
search. Existing partitioners need additional functionality to support new
applications. Partitioning models must more accurately represent a broader
range of applications, including those with non-symmetric, non-square, and/or
highly-connected relationships. And partitioning algorithms need to be sensi-
tive to state-of-the-art, heterogeneous computer architectures, adjusting work
assignments relative to processing, memory and communication resources.

5.1 Hypergraph Partitioning

Development of robust partitioning models is important in load-balancing re-
search. While graph models (see Section 2.2) are often considered the most
effective models for mesh-based PDE simulations, they have limitations for
larger classes of problems (e.g., electrical systems, computational biology, lin-
ear programming). These new problems are often more highly connected, more
heterogeneous, and less symmetric than mesh-based PDE problems.
As an alternative to graphs, hypergraphs can be used to model application

data [19, 20]. A hypergraph HG = (V,HE) consists of a set of vertices V

representing the data objects to be partitioned and a set of hyperedges HE

connecting two or more vertices of V . By allowing larger sets of vertices to
be associated through edges, the hypergraph model overcomes many of the
limitations of the graph model.
A key limitation of the graph model is that its edge-cut metric only approx-

imates communication volume induced by a decomposition (see Section 1.3).
While this approximation is adequate for traditional finite-element, finite-
volume, and finite-difference simulations, it is not sufficient for more highly



22 Teresco, Devine and Flaherty

connected and unstructured data. In the hypergraph model, however, the
number of hyperedge cuts is equal to the communication volume, providing a
more effective partitioning metric.
Catalyurek and Aykanat [20] also describe the greater expressiveness of

hypergraph models over graph models. Because edges in the graph model
are non-directional, they imply symmetry in all relationships, making them
appropriate only for problems represented by square, structurally symmetric
matrices. Systems A with non-symmetric structure must be represented by
a symmetrized model A + AT , adding new edges to the graph and further
skewing the communication metric. While a directed graph model could be
adopted, it would not improve the accuracy of the communication metric.
Likewise, graph models can not represent rectangular matrices, such as those
arising in linear programming. Kolda and Hendrickson [52] propose using bi-
partite graphs. For an m × n matrix A, vertices mi, i = 1, . . . ,m represent
rows, and vertices nj , j = 1, . . . , n represent columns. Edges eij connecting
mi and nj exist for non-zero matrix entries aij . But as in other graph models,
the number of edge cuts only approximates communication volume.
Hypergraph models, on the other hand, do not imply symmetry in rela-

tionships, allowing both structurally non-symmetric and rectangular matrices
to be represented. For example, the rows of a rectangular matrix could be
represented by the vertices of a hypergraph. Each matrix column would be
represented by a hyperedge connecting all non-zero rows in the column [20].
The improved communication metric and expressiveness of hypergraph

models lead to impressive results. Using hypergraph partitioning, Catalyurek
and Aykanat [20] report reductions in communication volume of 12-15% com-
pared to graph partitioning for matrices from traditional finite difference ap-
plications. But for a broader range of matrices, including examples from linear
programming, circuit simulations and stochastic programming, hypergraph
partitioning produced reductions of 30-38% on average. Time to compute the
hypergraph decomposition was 34-130% greater than that required to com-
pute a graph decomposition.
Hypergraph partitioning’s effectiveness has been demonstrated in many

areas, including VLSI layout [16], sparse matrix decompositions [20, 119],
and database storage and data mining [21, 85]. Serial hypergraph partitioners
are available (e.g., hMETIS [64], PaToH [20, 19], Mondriaan [119]). Research
into parallel hypergraph partitioning includes a disk-based implementation
used for partitioning Markov matrices [116] and a distributed memory imple-
mentation in Zoltan [13]. Parallel implementation is needed for hypergraph
partitioning to be viable for very large simulations. Additionally, incremental
hypergraph algorithms (analogous to diffusive graph algorithms [24]) will be
needed for dynamic applications.



Partitioning and Dynamic Load Balancing 23

5.2 Multi-criteria Partitioning

Most load-balancing research has focused on cases having a single load to be
balanced. Multi-phase simulations, however, might have different work loads
in each phase of a simulation. For example, a multiphysics simulation might
include both fluid flow and solid mechanics phases. Crash simulations typically
have a finite-element solve phase and a contact-detection phase. Even within
a finite element simulation, the matrix assembly and matrix solve phases may
have significantly different load characteristics depending on the physics of
the problem.
One approach to balancing multi-phase simulations is to use separate de-

compositions for each phase, mapping data between decompositions when
needed. This approach has been used with great success in crash simula-
tions, where static graph-based decompositions were used for the finite el-
ement phase and dynamic geometric decompositions were used for contact
detection [96]; data were transferred between the decompositions as needed
between phases.
Still, the idea of having a single decomposition that is balanced with re-

spect to multiple loads is attractive. With such a decomposition, no mapping
of data is needed between phases, reducing application communication costs.
Each object to be balanced would have a vector v of weights associated with
it; the jth component of v would represent the object’s workload in phase j.
A single decomposition would then be generated that balances each vector
component.
Walshaw, et al. [125] developed a multiphase graph partitioner in Jos-

tle [126]. Assuming components of weight vector v represent a vertex’s par-
ticipation in a phase, they say the “type” of the vertex is the first phase j

in which the vertex participates, i.e., for which v[j] > 0. They then balance
each type of vertex separately, maintaining partition information from lower
types as “stationary” vertices in the partitioning of higher types. That is,
in computing a partition for vertices of type k, k > j, all vertices of type j

within a partition are represented by a single “supervertex” whose partition
assignment is fixed to a particular partition; edges between these stationary
vertices and vertices of type k are maintained to represent data dependencies
between the phases. A standard graph partitioner is used to partition each
type of vertices; in attempting to minimize cut edges, the graph partitioner
is likely to assign type k vertices to the same partition as type j vertices to
which they are connected, keeping inter-phase communication costs low.
The multi-constraint graph-partitioning model of Karypis, et al. [63, 104]

in METIS [65] and ParMETIS [67] uses vertex weight vectors to create multi-
ple load-balancing constraints. Using this model, they can compute both mul-
tiphase decompositions and decompositions with respect to multiple criteria,
e.g., workloads and memory usage. Their approach is built on the multi-level
framework commonly used in graph partitioning (see Section 2.2), with mod-
ifications made in the coarsening, coarse-partitioning, and refinement steps



24 Teresco, Devine and Flaherty

to accommodate multiple vertex weights. During coarsening, the same heavy-
edge metric used in single-constraint partitioning is used to select vertices to
be combined; this metric combines a vertex with the neighboring vertex shar-
ing the heaviest edge weight. In multi-constraint partitioning, ties between
combinations with the same metric value are broken by a “balanced-edge”
metric that attempts to make all weights of the combined vertex as close to
the same value as possible, as more uniform weights are easier to balance in the
coarse-partitioning and refinement steps. A greedy recursive graph bisection
algorithm is used to compute the coarse partition; at each level of recursion,
two subdomains A and B are created by removing vertices from A (which
initially contains the entire domain) and adding them to B (which initially
is empty). In the multi-constraint case, vertices are selected based on their
ability to reduce the heaviest weight of A the most. In refinement, KL [69]
or FM [39] procedures are used. For multi-constraint partitioning, queues of
vertices that can be moved are maintained for each weight and neighboring
partition; vertices are again selected based on their ability to reduce the max-
imum imbalance over all weights while reducing the number of edges cut. To
enforce the balance constraints in multi-constraint partitioning, an additional
shifting of vertices among processors without regard to increases in the edge
cut weight is sometimes needed before refinement.
Because geometric partitioners are preferred for many applications, Bo-

man, et al. pursued multi-criteria partitioning for geometric partitioners,
specifically RCB [12]. Their implementation is included in Zoltan [29]. RCB
consists of a series of one-dimensional partitioning problems; objects i are
ordered linearly by their coordinate values corresponding to the direction of
the cut. Like other approaches, objects i have vector weights vi representing
the load-balance criteria. Instead of imposing multiple constraints, however,
Boman, et al. formulate each one-dimensional problem as an optimization
problem where the objective is to find a cut s such that

min
s
max(g(

∑

i≤s

vi), g(
∑

i>s

vi)),

where g is a monotonically non-decreasing function in each component of the
input vector (typically g(x) =

∑

j x
p
j with p = 1 or p = 2, or g(x) = ‖x‖ for

some norm). This objective function is unimodal with respect to s. In other
words, starting with s = 1 and increasing s, the objective decreases, until
at some point the objective starts increasing; that point defines the optimal
bisection value s. (Note that the objective may be locally flat (constant), so
there is not always a unique minimizer.) An optimal cut is computed in each
coordinate direction; the cut producing the best balance is accepted.
In general, computing multi-criteria decompositions becomes more diffi-

cult as the number of criteria and/or number of partitions increases. As a
result, partition quality can degrade. Likewise, multi-criteria partitions are
more expensive to compute than single-criterion partitions; the extra cost,



Partitioning and Dynamic Load Balancing 25

however, may be justified by the improved load balance and reduction of data
transfer.

5.3 Resource-Aware Balancing

Cluster and grid computing have made hierarchical and heterogeneous com-
puting systems increasingly common as target environments for large-scale sci-
entific computation. Heterogeneity may exist in processor computing power,
network speed, and memory capacity. Clusters may consist of networks of
multiprocessors with varying computing and memory capabilities. Grid com-
putations may involve communication across slow interfaces between vastly
different architectures. Modern supercomputers are often large clusters with
hierarchical network structures. Moreover, the characteristics of an environ-
ment can change during a computation due to increased multitasking and
network traffic. For maximum efficiency, software must adapt dynamically
to the computing environment and, in particular, data must be distributed
in a manner that accounts for non-homogeneous, changing computing and
networking resources. Several projects have begun to address resource-aware
load balancing in such heterogeneous, hierarchical, and dynamic computing
environments.
Minyard and Kallinderis [74] use octree structures to conduct partition-

ing in dynamic execution environments. To account for the dynamic nature
of the execution environment, they collect run-time measurements based on
the “wait” times of the processors involved in the computation. These “wait”
times measure how long each CPU remains idle while all other processors
finish the same task. The objects are assigned load factors that are propor-
tional to the “wait” times of their respective owning processes. Each octant
load is subsequently computed as the sum of load factors of the objects con-
tained within the octant. The octree algorithm then balances the load factors
based on the weight factors of the octants, rather than the number of objects
contained within each octant.
Walshaw and Cross [121] conduct multilevel mesh partitioning for het-

erogeneous communication networks. They modify a multilevel algorithm in
PJostle [126] seeking to minimize a cost function based on a model of the het-
erogeneous communication network. The model gives a static quantification
of the network heterogeneity as supplied by the user in a Network Cost Ma-
trix (NCM). The NCM implements a complete graph representing processor
interconnections. Each graph edge is weighted as a function of the length of
the path between its corresponding processors.
Sinha and Parashar [108] present a framework for adaptive system-sensitive

partitioning and load balancing on heterogeneous and dynamic clusters. They
use the Network Weather Service (NWS) [133] to gather information about
the state and capabilities of available resources; then they compute the load
capacity of each node as a weighted sum of processing, memory, and communi-



26 Teresco, Devine and Flaherty

cations capabilities. Reported experimental results show that system-sensitive
partitioning resulted in significant decrease of application execution time.
Faik, et al. [35] present the Dynamic Resource Utilization Model (DRUM)

for aggregating information about the network and computing resources of an
execution environment. Through minimally instrusive monitoring, DRUM col-
lects dynamic information about computing and networking capabilities and
usage; this information determines computing and communication “powers”
that can be used as the percentage of total work to be assigned to processes.
DRUM uses a tree structure to represent the underlying interconection of
hierarchical network topologies (e.g., clusters of clusters, or clusters of mul-
tiprocessors). Using DRUM’s dynamic monitoring and power computations,
they achieved 90% of optimal load distribution for heterogeneous clusters [35].

CPU0 CPU1

Node 1Node 0

CPU3

Network

CPU2CPU1 CPU3CPU0 CPU2

Memory Memory

8 processes compute one
2-way ParMetis partitioning

Each SMP independently
computes 4-way RIB partitioning

Fig. 10. Hierarchical balancing algorithm selection for two 4-way SMP nodes con-
nected by a network.

Teresco [114] has implemented hierarchical partitioning procedures within
Zoltan. These procedures can be used alone, or can be guided by DRUM [35].
Hierarchical partitioning allows any combination of Zoltan’s load-balancing
procedures to be used on different levels and subtrees of hierarchical machine
models. Tradeoffs in execution time, imbalance, and partition quality (e.g.,
surface indices, interprocess connectivity) can hold greater importance in het-
erogeneous environments [115], making different methods more appropriate
in certain types of environments. For example, consider the cluster of SMPs
connected by Ethernet shown in Figure 10. A more costly graph partition-
ing can be done to partition into two subdomains assigned to the SMPs, to
minimize communication across the slow network interface, possibly at the
expense of some computational imbalance. Then, a fast geometric algorithm
can be used to partition independently within each SMP. Teresco [114] reports
that while multilevel graph partitioning alone often achieves the fastest com-
putation times, there is some benefit to using this hierarchical load balancing,
particularly in maintaining strict load balance within the SMPs.

5.4 Migration Minimization

The costs of dynamic load balancing include (i) preparation of the input to the
partitioner, (ii) execution of the partitioning algorithm, and (iii) migration
of application data to achieve the new decomposition. The migration step is



Partitioning and Dynamic Load Balancing 27

often the most expensive, leading to efforts to reduce this cost. As described
in Section 3, selection of appropriate load-balancing procedures contributes
to reduced migration costs. Incremental procedures (e.g., RCB, SFC, Octree,
diffusive graph partitioning) are preferred when data migration costs must
be controlled. The unified partitioning strategy in ParMETIS computes both
a multilevel graph decomposition (“scratch-remap”) and a diffusive decom-
position [102, 103]; it then selects the better decomposition in terms of load
balance and migration costs.
Clever techniques can be used within an application to reduce data migra-

tion costs. For example, the most straightforward way to use partitioning and
dynamic load balancing in a parallel adaptive computation is shown on the
left in Figure 11. Here, an initial mesh is partitioned, and the computation
proceeds, checking periodically to determine whether the solution resolution
is sufficient. If not, the mesh is enriched adaptively, the load is rebalanced,
and the computation continues. Alternatively, the rebalancing can be done
before the mesh is actually enriched, if the error indicators used to predict
refinement can also predict appropriate weights for the mesh before enrich-
ment [43, 83] (Figure 11, right). This “predictive balancing” approach can
improve computational balance during the refinement phase, and leads to less
data migration, as redistribution occurs on the smaller mesh. Moreover, with-
out predictive balancing, individual processors may have nearly all of their
elements scheduled for refinement, leading to a memory overflow on those
processors, when in fact the total amount of memory available across all pro-
cessors is sufficient for the computation to proceed following refinement [40].
If the error indicators predict the resulting refinement with sufficient accu-
racy, the predictive balancing step also achieves a balanced partitioning of
the refined mesh. In some cases, a corrective load balancing step, e.g., with
one of the local methods outlined in Section 2.3, may be beneficial.

!done OK

!OK

done

Refine

Partition

Load
Rebalance

Compute

Error
Evaluate

Mesh

Initial Mesh
OK!done

!OK

done

Evaluate

Refine

Predicted Load
Rebalance

Initial Mesh
Partition Compute

Error

Mesh

Fig. 11. Non-predictive (left) and predictive (right) program flows for a typical
parallel adaptive computation.



28 Teresco, Devine and Flaherty

Techniques within load-balancing procedures can also reduce migration
costs. The similarity matrix in PLUM [82] represents a maximal matching
between an old decomposition and a new one. Old and new partitions are
represented by the nodes of a bipartite graph, with edges between old and new
partitions representing the amount of data they share. A maximal matching,
then, numbers the new partitions to provide the greatest overlap between old
and new decompositions and, thus, the least data movement. Similar strategies
have been adopted by ParMETIS [68] and Zoltan [29].
Load-balancing objectives can also be adjusted to reduce data migration.

Heuristics used in local refinement (see Section 2.3) can select objects for
movement that have the lowest data movement costs. They can also select
a few heavily weighted objects to satisfy balance criteria rather than many
lightly weighted objects. Hu and Blake compute diffusive decompositions to
achieve load balance subject to a minimization of data movement [59]. Berzins
extends their idea by allowing greater load imbalance when data movement
costs are high [10]; he minimizes a metric combining load imbalance and data
migration to reduce actual time-to-solution (rather than load imbalance) on
homogeneous and heterogeneous networks.

Acknowledgments

The authors thank the following people for their collaborations and discus-
sions: Andrew Bauer, Diane Bennett, Rob Bisseling, Erik Boman, Paul Camp-
bell, Laura Effinger-Dean, Jamal Faik, Luis Gervasio, Robert Heaphy, Bruce
Hendrickson, Steve Plimpton, Robert Preis, Arjun Sharma, Lida Ungar, and
Courtenay Vaughan.

References

1. Adjerid, S., Flaherty, J. E., Moore, P., and Wang, Y.: High-order adaptive
methods for parabolic systems. Physica-D, 60:94–111, (1992)

2. Aluru, S. and Sevilgen, F.: Parallel domain decomposition and load balanc-
ing using space-filling curves. In Proc. International Conference on High-
Performance Computing, pages 230–235, (1997)

3. Bank, R. E. and Holst, M. J.: A new paradigm for parallel adaptive meshing
algorithms. SIAM J. Scien. Comput., 22:1411–1443, (2000)

4. Barker, K. J. and Chrisochoides, N. P.: An evaluation of a framework for the
dynamic load balancing of highly adaptive and irregular parallel applications.
In Proc. Supercomputing 2003, Phoenix, (2003)

5. Barnard, S. T.: PMRSB: parallel multilevel recursive spectral bisection. In
Baker, F. andWehmer, J., editors, Proc. Supercomputing ’95, San Diego, (1995)

6. Barnard, S. T. and Simon, H. D.: Fast multilevel implementation of recur-
sive spectral bisection for partitioning unstructured problems. Concurrency:
Practice and Experience, 6(2):101–117, (1994)



Partitioning and Dynamic Load Balancing 29

7. Bartholdi, J. J. and Platzman, L. K.: An O(n logn) travelling salesman heuris-
tic based on spacefilling curves. Operation Research Letters, 1(4):121–125,
(1982)

8. Bauer, A. C.: Efficient Solution Procedures for Adaptive Finite Element Meth-
ods – Applications to Elliptic Problems. PhD thesis, State University of New
York at Buffalo, (2002)

9. Berger, M. J. and Bokhari, S. H.: A partitioning strategy for nonuniform prob-
lems on multiprocessors. IEEE Trans. Computers, 36:570–580, (1987)

10. Berzins, M.: A new metric for dynamic load balancing. Appl. Math. Modelling,
25:141–151, (2000)

11. Bially, T.: Space-filling curves: their generation and their application to band
reduction. IEEE Trans. Inform. Theory, IT-15:658–664, (1969)

12. Boman, E., Devine, K., Heaphy, R., Hendrickson, B., Heroux, M., and Preis, R.:
LDRD report: Parallel repartitioning for optimal solver performance. Techni-
cal Report SAND2004–0365, Sandia National Laboratories, Albuquerque, NM,
(2004)

13. Boman, E., Devine, K., Heaphy, R., Hendrickson, B., Mitchell, W. F., John,
M. S., and Vaughan, C.: Zoltan: Data-management services for parallel appli-
cations. URL: http://www.cs.sandia.gov/Zoltan

14. Bottasso, C. L., Flaherty, J. E., Özturan, C., Shephard, M. S., Szymanski,
B. K., Teresco, J. D., and Ziantz, L. H.: The quality of partitions produced
by an iterative load balancer. In Szymanski, B. K. and Sinharoy, B., editors,
Proc. Third Workshop on Languages, Compilers, and Runtime Systems, pages
265–277, Troy, (1996)

15. Bui, T. and Jones, C.: A heuristic for reducing fill in sparse matrix factoriza-
tion”. In Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing,
pages 445–452. SIAM, (1993)

16. Caldwell, A., Kahng, A., and Markov, J.: Design and implementation of move-
based heuristics for VLSI partitioning. ACM J. Experimental Algs., 5, (2000)

17. Campbell, P. M., Devine, K. D., Flaherty, J. E., Gervasio, L. G., and Teresco,
J. D.: Dynamic octree load balancing using space-filling curves. Technical
Report CS-03-01, Williams College Department of Computer Science, (2003)

18. Cao, F., Gilbert, J. R., and Teng, S.-H.: Partitioning meshes with
lines and planes. Technical Report CSL–96–01, Xerox PARC, (1996).
ftp://parcftp.xerox.com/pub/gilbert/index.html

19. Catalyurek, U. and Aykanat, C.: Decomposing irregularly sparse matrices for
parallel matrix-vector multiplications. Lecture Notes in Computer Science,
1117:75–86, (1996)

20. Catalyurek, U. and Aykanat, C.: Hypergraph-partitioning based decomposition
for parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Dist.
Systems, 10(7):673–693, (1999)

21. Chang, C., Kurc, T., Sussman, A., Catalyurek, U., and Saltz, J.: A hypergraph-
based workload partitioning strategy for parallel data aggregation. In Proc. of
11th SIAM Conf. Parallel Processing for Scientific Computing. SIAM, (2001)

22. Chatterjee, S., Lebeck, A. R., Patnala, P. K., and Thottethodi, M.: Recursive
array layouts and fast parallel matrix multiplication. In ACM Symposium on
Parallel Algorithms and Architectures, pages 222–231, (1999)

23. Cheng, C.-K. and Wei, Y.-C. A.: An improved two-way partitioning algorithm
with stable performance. IEEE Trans. Computer Aided Design, 10(12):1502–
1511, (1991)



30 Teresco, Devine and Flaherty

24. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors.
J. Parallel Distrib. Comput., 7:279–301, (1989)

25. Dagum, L.: Automatic partitioning of unstructured grids into connected com-
ponents. In Proc. Supercomputing Conference 1993, pages 94–101, Los Alami-
tos, (1993). IEEE, Computer Society Press

26. de Cougny, H. L., Devine, K. D., Flaherty, J. E., Loy, R. M., Özturan, C., and
Shephard, M. S.: Load balancing for the parallel adaptive solution of partial
differential equations. Appl. Numer. Math., 16:157–182, (1994)

27. Devine, K. D., Boman, E. G., Heaphy, R. T., Hendrickson, B. A., Teresco,
J. D., Faik, J., Flaherty, J. E., and Gervasio, L. G.: New challenges in dynamic
load balancing. Technical Report Technical Report CS-04-02, Williams College
Department of Computer Science, (2004). To appear, Appl. Numer. Math.

28. Devine, K. D. and Flaherty, J. E.: Parallel adaptive hp-refinement techniques
for conservation laws. Appl. Numer. Math., 20:367–386, (1996)

29. Devine, K. D., Hendrickson, B. A., Boman, E., St. John, M., and Vaughan, C.:
Zoltan: A Dynamic Load Balancing Library for Parallel Applications; User’s
Guide. Sandia National Laboratories, Albuquerque, NM, (1999). Tech. Report
SAND99-1377. Open-source software distributed at http://www.cs.sandia.

gov/Zoltan.
30. Diekmann, R., Meyer, D., and Monien, B.: Parallel decomposition of unstruc-

tured fem-meshes. In Proc. Parallel Algorithms for Irregularly Structured Prob-
lems, pages 199–216. Springer LNCS 980, (1995)

31. Diekmann, R., Monien, B., and Preis, R.: Load balancing strategies for dis-
tributed memory machines. In Topping, B., editor, Parallel and Distributed
Processing for Computational Mechanics: Systems and Tools, pages 124–157,
Edinburgh, (1999). Saxe-Coburg

32. Diekmann, R., Preis, R., Schlimbach, F., and Walshaw, C.: Shape-optimized
mesh partitioning and load balancing for parallel adaptive fem. Parallel Com-
put., 26(12):1555–1581, (2000)

33. Edwards, H. C.: A Parallel Infrastructure for Scalable Adaptive Finite Element
Methods and its Application to Least Squares C∞ Collocation. PhD thesis, The
University of Texas at Austin, (1997)

34. Enbody, R., Purdy, R., and Severance, C.: Dynamic load balancing. In Proc.
7th SIAM Conference on Parallel Processing for Scientific Computing, pages
645–646. SIAM, (1995)

35. Faik, J., Gervasio, L. G., Flaherty, J. E., Chang, J., Teresco, J. D., Boman,
E. G., and Devine, K. D.: A model for resource-aware load balancing on het-
erogeneous clusters. Technical Report CS-04-03, Williams College Department
of Computer Science, (2004). Presented at Cluster ’04

36. Farhat, C.: A simple and efficient automatic FEM domain decomposer. Com-
puters and Structures, 28(5):579–602, (1988)

37. Farhat, C., Lanteri, S., and Simon, H. D.: TOP/DOMDEC: a software tool
for mesh partitioning and parallel processing. Comp. Sys. Engng., 6(1):13–26,
(1995)

38. Farhat, C. and Lesoinne, M.: Automatic partitioning of unstructured meshes
for the parallel solution of problems in computational mechanics. Int. J. Nu-
mer. Meth. Engng., 36:745–764, (1993)

39. Fiduccia, C. M. and Mattheyses, R. M.: A linear time heuristic for improving
network partitions. In Proc. 19th IEEE Design Automation Conference, pages
175–181. IEEE, (1982)



Partitioning and Dynamic Load Balancing 31

40. Flaherty, J. E., Dindar, M., Loy, R. M., Shephard, M. S., Szymanski, B. K.,
Teresco, J. D., and Ziantz, L. H.: An adaptive and parallel framework for
partial differential equations. In Griffiths, D. F., Higham, D. J., and Watson,
G. A., editors, Numerical Analysis 1997 (Proc. 17th Dundee Biennial Conf.),
number 380 in Pitman Research Notes in Mathematics Series, pages 74–90.
Addison Wesley Longman, (1998)

41. Flaherty, J. E., Loy, R. M., Özturan, C., Shephard, M. S., Szymanski, B. K.,
Teresco, J. D., and Ziantz, L. H.: Parallel structures and dynamic load balanc-
ing for adaptive finite element computation. Appl. Numer. Math., 26:241–263,
(1998)

42. Flaherty, J. E., Loy, R. M., Shephard, M. S., Szymanski, B. K., Teresco, J. D.,
and Ziantz, L. H.: Adaptive local refinement with octree load-balancing for the
parallel solution of three-dimensional conservation laws. J. Parallel Distrib.
Comput., 47:139–152, (1997)

43. Flaherty, J. E., Loy, R. M., Shephard, M. S., Szymanski, B. K., Teresco, J. D.,
and Ziantz, L. H.: Predictive load balancing for parallel adaptive finite element
computation. In Arabnia, H. R., editor, Proc. PDPTA ’97, volume I, pages
460–469, (1997)

44. Flaherty, J. E., Loy, R. M., Shephard, M. S., and Teresco, J. D.: Software for
the parallel adaptive solution of conservation laws by discontinuous Galerkin
methods. In Cockburn, B., Karniadakis, G., and Shu, S.-W., editors, Discon-
tinous Galerkin Methods Theory, Computation and Applications, volume 11
of Lecture Notes in Compuational Science and Engineering, pages 113–124,
Berlin, (2000). Springer

45. Garbers, J., Promel, H. J., and Steger, A.: Finding clusters in VLSI circuits.
In Proc. IEEE Intl. Conf. on Computer Aided Design, pages 520–523, (1990)

46. Garey, M., Johnson, D., and Stockmeyer, L.: Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237–267, (1976)

47. Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, (1979)

48. Hagen, L. and Kahng, A.: Fast spectral methofs for ratio cut partitioning and
clustering. In Proc. IEEE Intl. Conf. on Computer Aided Design, pages 10–13,
(1991)

49. Hagen, L. and Kahng, A.: A new approach to effective circuit clustering. In
Proc. IEEE Intl. Conf. on Computer Aided Design, pages 422–427, (1992)

50. Hendrickson, B.: Graph partitioning and parallel solvers: Has the emperor no
clothes? In Proc. Irregular’98, volume 1457 of Lecture Notes in Computer
Science, pages 218–225. Springer-Verlag, (1998)

51. Hendrickson, B. and Devine, K.: Dynamic load balancing in computational
mechanics. Comput. Methods Appl. Mech. Engrg., 184(2–4):485–500, (2000)

52. Hendrickson, B. and Kolda, T. G.: Graph partitioning models for parallel com-
puting. Parallel Comput., 26:1519–1534, (2000)

53. Hendrickson, B. and Leland, R.: The Chaco user’s guide, version 2.0. Technical
Report SAND94–2692, Sandia National Laboratories, Albuquerque, (1994).
Open-source software distributed at http://www.cs.sandia.gov/~bahendr/

chaco.html.
54. Hendrickson, B. and Leland, R.: An improved spectral graph partitioning algo-

rithm for mapping parallel computations. SIAM J. Scien. Comput., 16(2):452–
469, (1995)



32 Teresco, Devine and Flaherty

55. Hendrickson, B. and Leland, R.: A multilevel algorithm for partitioning graphs.
In Proc. Supercomputing ’95, (1995)

56. Horton, G.: A multi-level diffusion method for dynamic load balancing. Parallel
Comput., 19:209–218, (1993)

57. Hsieh, S.-H., Paulino, G. H., and Abel, J. F.: Evaluation of automatic domain
partitioning algorithms for parallel finite element analysis. Structural Engi-
neering Report 94-2, School of Civil and Environmental Engineering, Cornell
University, Ithaca, (1994)

58. Hu, Y. F. and Blake, R. J.: An optimal dynamic load balancing algorithm.
Preprint DL-P-95-011, Daresbury Laboratory, Warrington, WA4 4AD, UK,
(1995)

59. Hu, Y. F., Blake, R. J., and Emerson, D. R.: An optimal migration algorithm
for dynamic load balancing. Concurrency: Practice and Experience, 10:467 –
483, (1998)

60. Jagadish, H. V.: Linear clustering of objects with multiple attributes. In Proc.
ACM SIGMOD, pages 332–342, (1990)

61. Jones, M. T. and Plassmann, P. E.: Computational results for parallel unstruc-
tured mesh computations. Comp. Sys. Engng., 5(4–6):297–309, (1994)

62. Kale, L. V. and Krishnan, S.: CHARM++: A portable concurrent object ori-
ented system based on C++. ACM SIGPLAN notices, 28(10):91–128, (1993)

63. Karypis, G. and Kumar, V.: Multilevel algorithms for multiconstraint graph
paritioning. Technical Report 98-019, Department of Computer Science, Uni-
versity of Minnesota, (1998)

64. Karypis, G., Aggarwal, R., Kumar, V., and Shekhar, S.: Multilevel hypergraph
partitioning: application in VLSI domain. In Proc. 34th conf. Design automa-
tion, pages 526 – 529. ACM, (1997)

65. Karypis, G. and Kumar, V.: Metis: Unstructured graph partitioning and sparse
matrix ordering system. Tech. Report, University of Minnesota, Department of
Computer Science, Minneapolis, MN, (1995). Open-source software distributed
at http://www-users.cs.umn.edu/~karypis/metis.

66. Karypis, G. and Kumar, V.: A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Scien. Comput., 20(1), (1999)

67. Karypis, G. and Kumar, V.: Parallel multivelel k-way partitioning scheme for
irregular graphs. SIAM Review, 41(2):278–300, (1999)

68. Karypis, G., Schloegel, K., and Kumar, V.: ParMetis Parallel Graph Parti-
tioning and Sparse Matrix Ordering Library, Version 3.1. University of Min-
nesota Department of Computer Science and Engineering, and Army HPC
Research Center, Minneapolis, (2003). Open-source software distributed at
http://www-users.cs.umn.edu/~karypis/metis.

69. Kernighan, B. and Lin, S.: An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 29:291–307, (1970)

70. Leiss, E. and Reddy, H.: Distributed load balancing: design and performance
analysis. W. M. Kuck Research Computation Laboratory, 5:205–270, (1989)

71. Loy, R. M.: Adaptive Local Refinement with Octree Load-Balancing for the Par-
allel Solution of Three-Dimensional Conservation Laws. PhD thesis, Computer
Science Dept., Rensselaer Polytechnic Institute, Troy, (1998)

72. Maerten, B., Roose, D., Basermann, A., Fingberg, J., and Lonsdale, G.:
DRAMA: A library for parallel dynamic load balancing of finite element appli-
cations. In Proc. Ninth SIAM Conference on Parallel Processing for Scientific



Partitioning and Dynamic Load Balancing 33

Computing, San Antonio, (1999). Library distributed under license agreement
from http://www.ccrl-nece.de/~drama/drama.html.

73. Minyard, T. and Kallinderis, Y.: Octree partitioning of hybrid grids for paral-
lel adaptive viscous flow simulations. Int. J. Numer. Meth. Fluids, 26:57–78,
(1998)

74. Minyard, T. and Kallinderis, Y.: Parallel load balancing for dynamic execution
environments. Comput. Methods Appl. Mech. Engrg., 189(4):1295–1309, (2000)

75. Minyard, T., Kallinderis, Y., and Schulz, K.: Parallel load balancing for dy-
namic execution environments. In Proc. 34th Aerospace Sciences Meeting and
Exhibit, number 96-0295, Reno, (1996)

76. Mitchell, W. F.: Refinement tree based partitioning for adaptive grids. In
Proc. Seventh SIAM Conf. on Parallel Processing for Scientific Computing,
pages 587–592. SIAM, (1995)

77. Mitchell, W. F.: The full domain partition approach to distributing adaptive
grids. Appl. Numer. Math., 26:265–275, (1998)

78. Mitchell, W. F.: The refinement-tree partition for parallel solution of partial
differential equations. NIST Journal of Research, 103(4):405–414, (1998)

79. Moon, B., Jagadish, H. V., Faloutsos, C., and Saltz, J. H.: Analysis of the
clustering properties of the Hilbert space-filling curve. IEEE Trans. Knowledge
and Data Engng., 13(1):124–141, (2001)

80. Morton, G. M.: A computer oriented geodetic data base and a new technique
in file sequencing. Technical report, IBM Ltd., (1966)

81. Oden, J. T., Patra, A., and Feng, Y.: Domain decomposition for adaptive hp
finite element methods. In Proc. Seventh Intl. Conf. Domain Decomposition
Methods, State College, Pennsylvania, (1993)

82. Oliker, L. and Biswas, R.: PLUM: Parallel load balancing for adaptive unstruc-
tured meshes. J. Parallel Distrib. Comput., 51(2):150–177, (1998)

83. Oliker, L., Biswas, R., and Strawn, R. C.: Parallel implementaion of an adap-
tive scheme for 3D unstructured grids on the SP2. In Proc. 3rd International
Workshop on Parallel Algorithms for Irregularly Structured Problems, Santa
Barbara, (1996)

84. Orenstein, J. A.: Spatial query processing in an object-oriented database sys-
tem. In Proc. ACM SIGMOD, pages 326–336, (1986)

85. Ozdal, M. and Aykanat, C.: Hypergraph models and algorithms for data-
pattern based clustering. Data Mining and Knowledge Discovery, (2004). Ac-
cepted for publication

86. Özturan, C.: Distributed Environment and Load Balancing for Adaptive Un-
structured Meshes. PhD thesis, Computer Science Dept., Rensselaer Polytech-
nic Institute, Troy, (1995)

87. Parashar, M., Browne, J. C., Edwards, C., and Klimkowski, K.: A common
data management infrastructure for adaptive algorithms for PDE solutions. In
Proc. SC97, San Jose, CA, (1997)

88. Parashar, M. and Browne, J. C.: On partitioning dynamic adaptive grid hi-
erarchies. In Proc. 29th Annual Hawaii International Conference on System
Sciences, volume 1, pages 604–613, (1996)

89. Patra, A. and Oden, J. T.: Problem decomposition for adaptive hp finite ele-
ment methods. Comp. Sys. Engng., 6(2):97–109, (1995)

90. Patrick, E. A., Anderson, D. R., and Brechtel, F. K.: Mapping multidimensional
space to one dimension for computer output display. IEEE Trans. Computers,
C-17(10):949–953, (1968)



34 Teresco, Devine and Flaherty

91. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Mathematische
Annalen, 36:157–160, (1890)

92. Pellegrini, F.: Scotch 3.1 User’s guide. Technical Report 1137-96, LaBRI,
Université Bordeaux I, (1996). Library available at http://www.labri.fr/

Perso/~pelegrin/scotch/.
93. Pellegrini, F. and Roman, J.: Experimental analysis of the dual recursive bipar-

titioning algorithm for static mapping. Technical Report 1038-96, Universite
Bordeaux I, (1996)

94. Pilkington, J. R. and Baden, S. B.: Dynamic partitioning of non-uniform struc-
tured workloads with spacefilling curves. IEEE Trans. on Parallel and Dis-
tributed Systems, 7(3):288–300, (1996)

95. Pınar, A. and Hendrickson, B.: Graph partitioning for complex objectives.
In Proc. 15th Int’l Parallel and Distributed Processing Symp. (I PDPS), San
Francisco, CA, (2001)

96. Plimpton, S., Attaway, S., Hendrickson, B., Swegle, J., Vaughan, C., and Gard-
ner, D.: Transient dynamics simulations: Parallel algorithms for contact de-
tection and smoothed particle hydrodynamics. J. Parallel Distrib. Comput.,
50:104–122, (1998)

97. Pothen, A., Simon, H., and Liou, K.-P.: Partitioning sparse matrices with eigen-
vectors of graphs. SIAM J. Mat. Anal. Appl., 11(3):430–452, (1990)

98. Preis, R. and Diekmann, R.: Advances in Computational Mechanics with Par-
allel and Distributed Processing, chapter PARTY – A Software Library for
Graph Partitioning, pages 63–71. CIVIL-COMP PRESS, (1997). Library dis-
tributed under free research and academic license at http://wwwcs.upb.de/

fachbereich/AG/monien/RESEARCH/PART/party.html.
99. Sagan, H.: Space-Filling Curves. Springer-Verlag, (1994)

100. Schloegel, K., Karypis, G., and Kumar, V.: Multilevel diffusion schemes for
repartitioning of adaptive meshes. J. Parallel Distrib. Comput., 47(2):109–
124, (1997)

101. Schloegel, K., Karypis, G., and Kumar, V.: A new algorithm for multi-objective
graph partitioning. Tech. Report 99-003, University of Minnesota, Department
of Computer Science and Army HPC Center, Minneapolis, (1999)

102. Schloegel, K., Karypis, G., and Kumar, V.: A unified algorithm for load-
balancing adaptive scientific simulations. In Proc. Supercomputing, Dallas,
(2000)

103. Schloegel, K., Karypis, G., and Kumar, V.: Wavefront diffusion and LMSR: Al-
gorithms for dynamic repartitioning of adaptive meshes. IEEE Trans. Parallel
Distrib. Syst., 12(5):451–466, (2001)

104. Schloegel, K., Karypis, G., and Kumar, V.: Parallel static and dynamic multi-
constraint graph partitioning. Concurrency and Computation – Practice and
Experience, 14(3):219–240, (2002)

105. Shephard, M. S., Dey, S., and Flaherty, J. E.: A straightforward structure to
construct shape functions for variable p-order meshes. Comp. Meth. in Appl.
Mech. and Engng., 147:209–233, (1997)

106. Shephard, M. S., Flaherty, J. E., de Cougny, H. L., Özturan, C., Bottasso, C. L.,
and Beall, M. W.: Parallel automated adaptive procedures for unstructured
meshes. In Parallel Comput. in CFD, number R-807, pages 6.1–6.49. Agard,
Neuilly-Sur-Seine, (1995)

107. Simon, H. D.: Partitioning of unstructured problems for parallel processing.
Comp. Sys. Engng., 2:135–148, (1991)



Partitioning and Dynamic Load Balancing 35

108. Sinha, S. and Parashar, M.: Adaptive system partitioning of AMR applications
on heterogeneous clusters. Cluster Computing, 5(4):343–352, (2002)

109. Sohn, A. and Simon, H.: S-HARP: A scalable parallel dynamic partitioner for
adaptive mesh-based computations. In Proc. Supercomputing ’98, Orlando,
(1998)

110. Steensland, J.: Vampire homepage. http://user.it.uu.se/~johans/

research/vampire/vampire1.html, (2000). Open-source software distributed
at http://user.it.uu.se/~johans/research/vampire/download.html.

111. Steensland, J., Chandra, S., and Parashar, M.: An application-centric charac-
terization of domain-based SFC partitioners for parallel SAMR. IEEE Trans.
Parallel and Distrib. Syst., 13(12):1275–1289, (2002)

112. Steensland, J., Söderberg, S., and Thuné, M.: A comparison of partitioning
schemes for blockwise parallel SAMR algorithms. In Proc. 5th International
Workshop on Applied Parallel Computing, New Paradigms for HPC in Industry
and Academia, volume 1947 of Lecture Notes in Computer Science, pages 160–
169, London, (2000). Springer-Verlag

113. Taylor, V. E. and Nour-Omid, B.: A study of the factorization fill-in for a
parallel implementation of the finite element method. Int. J. Numer. Meth.
Engng., 37:3809–3823, (1994)

114. Teresco, J. D., Faik, J., and Flaherty, J. E.: Hierarchical partitioning and dy-
namic load balancing for scientific computation. Technical Report CS-04-04,
Williams College Department of Computer Science, (2004). Submitted to Proc.
PARA ’04.

115. Teresco, J. D. and Ungar, L. P.: A comparison of Zoltan dynamic load balancers
for adaptive computation. Technical Report CS-03-02, Williams College De-
partment of Computer Science, (2003). Presented at COMPLAS ’03

116. Trifunovic, A. and Knottenbelt, W. J.: Towards a parallel disk-based algorithm
for multilevel k-way hypergraph partitioning. In Proc. 18th International Par-
allel and Distributed Processing Symposium (IPDPS’04), page 236b, Santa Fe,
(2004)

117. Van Driessche, R. and Roose, D.: An improved spectral bisection algorithm
and its application to dynamic load balancing. Parallel Comput., 21:29–48,
(1995)

118. Vanderstraeten, D., Farhat, C., Chen, P., Keunings, R., and Ozone, O.: A
retrofit based methodology for the fast generation and optimization of large-
scale mesh partitions: beyond the minimum interface size criterion. Comput.
Methods Appl. Mech. Engrg., 133:25–45, (1996)

119. Vastenhouw, B. and Bisseling, R. H.: A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication. Preprint 1238, Dept.
of Mathematics, Utrecht University, (2002)

120. Walshaw, C. and Cross, M.: Multilevel Mesh Partitioning for Heterogeneous
Communication Networks. Tech. Rep. 00/IM/57, Comp. Math. Sci., Univ.
Greenwich, London SE10 9LS, UK, (2000)

121. Walshaw, C. and Cross, M.: Multilevel Mesh Partitioning for Heterogeneous
Communication Networks. Future Generation Comput. Syst., 17(5):601–623,
(2001). (originally published as Univ. Greenwich Tech. Rep. 00/IM/57)

122. Walshaw, C. and Cross, M.: Dynamic mesh partitioning and load-balancing
for parallel computational mechanics codes. In Topping, B. H. V., editor,
Computational Mechanics Using High Performance Computing, pages 79–94.



36 Teresco, Devine and Flaherty

Saxe-Coburg Publications, Stirling, (2002). (Invited Chapter, Proc. Parallel
& Distributed Computing for Computational Mechanics, Weimar, Germany,
1999)

123. Walshaw, C., Cross, M., and Everett, M.: A localized algorithm for optimizing
unstructured mesh partitions. Intl. J. of Supercomputer Applications, 9(4):280–
295, (1995)

124. Walshaw, C., Cross, M., and Everett, M.: Parallel dynamic graph-partitioning
for unstructured meshes. J. Parallel Distrib. Comput., 47(2):102–108, (1997)

125. Walshaw, C., Cross, M., and McManus, K.: Multiphase mesh partitioning.
Appl. Math. Modelling, 25(2):123–140, (2000). (originally published as Univ.
Greenwich Tech. Rep. 99/IM/51)

126. Walshaw, C.: The Parallel JOSTLE Library User’s Guide, Version 3.0.
University of Greenwich, London, UK, (2002). Library distributed under
free research and academic license at http://staffweb.cms.gre.ac.uk/~c.

walshaw/jostle/.
127. Warren, M. S. and Salmon, J. K.: A parallel hashed oct-tree n-body algorithm.

In Proc. Supercomputing ’93, pages 12–21. IEEE Computer Society, (1993)
128. Watts, J.: A practical approach to dynamic load balancing. Master’s Thesis,

(1995)
129. Watts, J., Rieffel, M., and Taylor, S.: A load balancing technique for multiphase

computations. In Proc. High Performance Computing ’97, pages 15–20. Society
for Computer Simulation, (1997)

130. Wheat, S.: A Fine Grained Data Migration Approach to Application Load Bal-
ancing on MP MIMD Machines. PhD thesis, University of New Mexico, De-
partment of Computer Science, Albuquerque, (1992)

131. Wheat, S., Devine, K., and MacCabe, A.: Experience with automatic, dynamic
load balancing and adaptive finite element computation. In El-Rewini, H. and
Shriver, B., editors, Proc. 27th Hawaii International Conference on System
Sciences, pages 463–472, Kihei, (1994)

132. Willebeek-LeMair, M. and Reeves, A.: Strategies for dynamic load balancing
on highly parallel computers. IEEE Parallel and Distrib. Sys., 4(9):979–993,
(1993)

133. Wolski, R., Spring, N. T., and Hayes, J.: The Network Weather Service: A dis-
tributed resource performance forecasting service for metacomputing. Future
Generation Comput. Syst., 15(5-6):757–768, (1999)

134. Xu, C., Lau, F., and Diekmann, R.: Decentralized remapping of data parallel
applications in distributed memory multiprocessors. Tech. Rep. tr-rsfb-96-021,
Dept. of Computer Science, University of Paderborn, Paderborn, Germany,
(1996)


