
Graph Partitioning Modelsfor Parallel ComputingBruce HendricksonParallel Computing Sciences Dept., Sandia National Labs,Albuquerque, NM 87185{1110. Email: bah@cs.sandia.gov.Tamara G. KoldaComputer Science and Mathematics Division, Oak Ridge National Laboratory,Oak Ridge, TN 37831{6367. Email: kolda@msr.epm.ornl.gov.AbstractCalculations can naturally be described as graphs in which vertices representcomputation and edges re
ect data dependencies. By partitioning the vertices ofa graph, the calculation can be divided among processors of a parallel computer.However, the standard methodology for graph partitioning minimizes the wrongmetric and lacks expressibility. We survey several recently proposed alternativesand discuss their relative merits.
1 IntroductionGraphs are widely used to describe the data dependencies within a compu-tation. Recall that a graph, G = (V;E), consists of a set of vertices, V =fv1; v2; : : : ; vng, and a set of pairwise relationships, E � V � V , called edges.If (vi; vj) 2 E, then we say that vertices vi and vj are neighbors. For our pur-poses, the vertices of the graph will represent units of computation, and theedges will encode data dependencies. Sometimes it is appropriate to associate1 Sandia National Laboratories Technical Report SAND99-0530. Submitted to Par-allel Computing. This work was supported by the Applied Mathematical SciencesResearch Program, O�ce of Energy Research, U.S. Department of Energy, undercontracts DE{AC05{96OR22464 and DE-AC04-94AL85000 with Lockheed MartinEnergy Research Corp.Preprint submitted to Elsevier Preprint 8 March 1999

weights with the nodes and/or edges of the graph to indicate the amount ofwork and/or data, respectively.For example, di�erential equations are usually solved numerically on a grid.During each iteration in the process towards a solution, all the grid points areupdated using neighboring values in the mesh. In Fig. 1 we show the meshand an associated data dependency graph for a symmetric 7-point stencil.Here each vertex in the graph at right represents the computation to updatethe associated point on the grid. Each vertex has edges connecting it to thevertices from which it needs information. Outputs from one iteration serve asinputs for the next.
Fig. 1. Grid, Stencil, and Graph.Once we have a graph model of a computation, graph partitioning can beused to determine how to divide up the work and data for an e�cient parallelcomputation. Our objectives, stated loosely, are to evenly distribute the com-putations over p processors by partitioning the vertices into p equally weightedsets while minimizing interprocessor communication which is represented byedges crossing between partitions.It is this simple relationship between graphs and computations which explainsthe ubiquity of graph partitioning in parallel computing. Graph partitioningis universally employed in the parallelization of calculations on unstructuredgrids including �nite element, �nite di�erence and �nite volume techniquesusing both explicit and implicit methods. It is used in the parallelization ofmatrix-vector multiplication for all types of iterative solvers. It is also usedto parallelize neural net simulations, particle calculations, circuit simulations,and a variety of other computations.Until recently only the standard graph partitioning approach has been em-ployed. The standard approach is to model the problem using a graph asdescribed above and partition the vertices of the graph into equally weightedsets in such a way that the weight of the edges crossing between sets is min-imized. Well-known software packages such as Chaco [13] and METIS [19]can be used for this purpose. Note that the graph partitioning problem isNP-hard [9], so these tools merely apply heuristics to generate approximatesolutions. 2

Unfortunately, the standard graph partitioning approach has several signi�-cant shortcomings which are discussed in detail in x2. The edge cut metricthat it tries to minimize is, at best, an imperfect model of communication ina parallel computation. The model also su�ers from a lack of expressibilitywhich limits the applications it can address.This paper is an extension of and an elaboration upon Hendrickson's critiqueof the standard partitioning model [10]. Whereas Hendrickson restricted hisconcerns to matrix-vector products, in the current paper we show that thesame issues plague virtually all applications of graph partitioning to parallelcomputation. In x3 we survey some recent work on alternative models whichaddress some of the limitations of the standard approach. We follow with abrief discussion of algorithms in x4, and suggest some fertile areas for furtherresearch in x5.2 Shortcomings of the Standard Graph Partitioning ApproachWe discuss several shortcomings of the standard graph partitioning approach.We begin with
aws associated with using the edge cuts metric (x2.1) andcontinue with limitations of the standard graph model (x2.2).2.1 Flaws of the Edge Cut MetricMinimizing edge cuts has several major
aws. First of all, although it is notwidely acknowledged, edge cuts are not proportional to the total communi-cation volume. The scenario is illustrated in Fig. 2. The ovals correspond todi�erent processors among which the vertices of the graph are partitioned.Assume that each edge has a weight of two corresponding to one unit of databeing communicated in each direction. So the weight of the cut edges is ten.However, observe that the data from node v2 on processor P1 need only becommunicated once to processor P2; similarly with nodes v4 and v7. Thus,the actual communication volume is only seven. In general, the edge cut met-ric does not recognize that two or more edges may be representing the sameinformation
ow, so it over counts the true volume of communication.Secondly, the time to send a message on a parallel computer is a functionof the latency (or start-up time) as well as the size of the message. Graphpartitioning approaches try to (approximately) minimize the total volume,but not the total number of messages. Depending on the machine architectureand problem size, message latencies can be more important than messagevolume. 3

v1

v2

v3

v4

v5
v6

v7
v8

P1

P2

P3Fig. 2. Edge cuts versus communication volumeThirdly, the performance of a parallel application is generally limited by theslowest processor. Even if the computational work is well balanced, the com-munication e�ort might not be. So, rather than minimizing the total commu-nication volume or even the total number of message, we may instead wish tominimize the maximum volume and/or number of messages handled by anysingle processor. The standard edge cuts measure does not encapsulate thistype of objective.Lastly, on many architectures the time to send a message depends upon thedistance between the sending and receiving processors. Geographic distanceis not the issue here, but rather the number of switches the message is routedthrough. Although most modern machines have some form of cut-through orwormhole routing which enables a single message to travel quickly betweendistant processors, the communication network is usually handling many mes-sages simultaneously. A message between distant processors ties up many wireswhich cannot be used by other messages. So to avoid message contention andimprove the overall throughput of the message tra�c, it is preferable to havecommunication restricted to processors which are near each other. So, for theproblem illustrated in Fig. 2, on a one-dimensional row of processors, thelayout P3 � P1 � P2 would be preferable to P1 � P2 � P3.In actuality, we are interested in all of these metrics to varying degrees, de-pending on how they a�ect the overall speed of the application. So we willlikely want to minimize an objective function with several components (e.g.,total volume and total number of messages), weighted to re
ect the importanceof each measure. In even more complicated settings, we may wish to balancethe sum of the computational and communications work on each processorwhile minimizing these combined objectives.Despite these problems with the edge cut measure, the standard partitioningapproach has proved successful for the parallel solution of di�erential equa-tions and grid-based problems in general. There are several reasons for thissuccess. First, grid points generally have only a small number of neighbors, sothe number of edge cuts is within a small multiple of the actual communicationvolume. This is not true of more general problems with more complex data4

dependencies. Second, computational grids generally exhibit a high degree ofgeometric locality which ensures that good partitions exist [26]. If the gridsize, n, is increased while the number of processors is held �xed, the ratio ofcommunication volume to computational work grows as n�1=3 in three dimen-sions and n�1=2 in two dimensions. Similarly, geometric locality ensures thatthe number of messages each processor sends is bounded. Lastly, the commu-nication volume per processor is fairly evenly distributed since there usuallyis not an enormous di�erence in the size of the boundary of each piece of thegrid. For all these reasons large grid computations tend to be limited by com-putational performance, so the details of the communication (and hence thepartition) are not critical. For other applications with more complex depen-dency patterns the quality of the partition can have a much more dramaticimpact on overall performance.2.2 Limitations of the Standard Graph ModelBesides minimizing the wrong objective function, the standard graph parti-tioning approach su�ers from limitations due to the lack of expressibility inthe model.One limitation of the undirected graph model is that it can only express sym-metric data dependencies. For example, the graph associated with a symmetricmatrix is shown in Fig. 3. For the computation y = Ax, vertex vi is associatedwith the computation of the inner product between row i of the matrix Awith the vector x. Observe that the edge between node v1 and v2 symbolizesa symmetric dependency: v1 needs x2, and v2 needs x1.
1

2

3

4

5

1 2 3 4 5
v1

v2

v3 v4

v5

Fig. 3. Graph of a Symmetric MatrixHowever, if the matrix is square but unsymmetric, then the dependencies areunsymmetric as well: v1 might need x2, while v2 does not need x1. This sit-uation can be easily represented in a directed graph, but not in the standardmodel. In a directed graph, edges are directed from the data producing ver-tex to the data consuming vertex. There are two work-arounds to make thestandard model `�t' unsymmetric dependencies. The �rst is to convert the di-rected edges to undirected edges. The second is a slight extension of the �rst;an edge that represents only a one-way communication gets a weight of one,5

and an edge that represents two-way communication gets a weight of two.Unsymmetric dependencies show up in other settings as well. For example,
ow calculations often involve unsymmetric stencils as depicted in Fig. 4.
Fig. 4. Grid, Stencil, and Directed Graph.Secondly, the symmetric model forces the partition of the input and outputdata to be identical. This is often desirable, particularly when the output fromthe previous computation is the input to the next computation. But in manysituations it is an unnecessary restriction. For instance, the standard modelgenerates the identical partitions of x and y when computing y = Ax for asquare matrix. For unsymmetric matrices, communication may be reduced byallowing the two partitions to di�er. For example, The input x may be theresult of a previous two-part operation which �rst computes y = Ax and thenz = ATy; this e�ectively maps from x-space to y-space and back to x-space.(The data layout and communication for application of A and AT is identical;see [12]). This brings us to the last two important issues.The third limitation of the standard model is that it assumes that the inputand output of the calculation are the size. For example, when A is rectangularin the calculation of y = Ax, the x- and y-spaces are of di�erent dimensions.Recall that the standard model handles symmetric matrix-vector multiplica-tion (y = Ax) by having a single vertex vi represent both xi and yi. When thematrix is not square, x and y are of di�erent lengths, and the standard modelis inapplicable.Lastly, even within the general framework of calculations which are repeatedover and over again, it is common for the calculation to consist of severaldistinct phases. Examples include the application of a matrix and a precon-ditioner in an iterative method, solving a di�erential equation and applyingboundary conditions, simulating di�erent phenomena in a multi-physics cal-culation, and advancing a grid and detecting contacts in a transient dynamicscomputation. The union of multiple phases cannot generally be described viaan undirected graph. As we will see in the next section, some alternatives tothe standard model retain its basic simplicity while enabling some of thesemore complex situations to be handled.6

3 Alternative Graph Partitioning ModelsSome of the shortcomings of the standard graph partitioning model can beaddressed by using recently developed alternatives. We describe four suchnon-standard models below.3.1 A Bipartite Graph ModelAs we noted in x2.2, the standard model using an undirected graph can onlyencode symmetric data dependencies and symmetric partitions. These lim-itations are particularly problematic for iterative solvers on unsymmetric ornon-square matrices. When using preconditioners, the inability of the standardmodel to capture multiple phase calculations are also problematic. In [11,12,23]Kolda and Hendrickson propose a bipartite graph model for describing matrix-vector multiplication which addresses some of these shortcomings. The bipar-tite model can also be applied to other applications involving unsymmetricdependencies and multiple phases.A bipartite graph, G = (V1; V2; E), is a special type of graph in which thevertices are divided into two disjoint subsets, V1 and V2, and E � V1�V2. So,no edges connect two vertices in the same subset; instead, all the edges crossbetween V1 and V2.This bipartite graph representation is most useful when the initial tasks arelogically distinct from the �nal tasks. This occurs in the transfer betweenphases of the multi-phase calculations described in x2.2. An important exampleis matrix-vector multiplication with non-square matrices. Fig. 5 shows thebipartite graph representation of a rectangular matrix. Here, the sets V1 andV2 correspond to the row and column vertices respectively. Each row vertexin V1 is weighted with the number of nonzeros in its row; e.g., row vertex r4has a weight of one. This weighting re
ects the computational work requiredin the matrix-vector product. Whichever processor owns vertex ri will ownthe piece yi of the resulting solution vector y = Ax. The partitioning of thecolumn vertices (V2) a�ects the layout of the input vector, x. The columnvertices may be left unweighted so that x may be partitioned in the optimalway to minimize edge cuts. Better yet, the column vertices may be weightedto distribute the computation of another operation on the input data suchas level-1 BLAS operations or multiplication by another matrix such as apreconditioner in an iterative method.The bipartite graph model is useful principally where the standard modelfails to be a good representation, and it has three main advantages. First,it can encode a class of problems that the standard graph model cannot.7

1

2

3

4

5

1 2 3 r1

r2

r3

r4

r5

c1

c2

c3Fig. 5. Rectangular Matrix and Bipartite Graph.Speci�cally, the initial (or input) vertices can be di�erent from the �nal (oroutput) vertices. Second, even if the initial vertices are identical to the �nalvertices, the bipartite model allows for the initial partition to di�er from the�nal partition. It achieves this by representing each vertex twice, once as aninitial vertex and once as a �nal vertex. This freedom can allow for a reductionin communication. However, in many applications a symmetric partition ispreferable, and this model cannot provide that. Third, by partitioning boththe initial and the �nal vertices, it can ensure load balance in two separateoperations, as mentioned above.Although the bipartite model has expressibility that the standard model lacks,the algorithms in [12] still optimize the
awed metric of edge cuts (as well assharing the other problems of the standard model described in x2.1). As wewill see in the next section, this problem can be addressed by optimizing agraph quantity other than cut edges.Although the bipartite model is good for describing two computational oper-ations, it is not able to accurately encode more. One possible generalizationis to use a k-partite graph in which the �rst set of vertices is connected to asecond set, which is connected to a third set, and so on. An alternative is themulti-constraint methodology described below in x3.3.3.2 A Hypergraph ModelRecall that edge cuts are not equal to communication volume, as illustratedin Fig. 2. In the �gure, vertex v2 on processor P1, for example, has two edgesconnecting to vertices on processor P2, but v2 need only be communicatedonce. The true communication volume is not a function the number of edgesbeing cut, but rather the sum of the number of processors to which each vertexhas connections. More formally, the total communication volume isPi bi wherebi is the number of external partitions in which vertex vi has neighbors. Wewill call this quantity the boundary cut of a partition. The observation thatboundary cuts are the more appropriate metric was made in [10] and motivateda modi�cation in METIS to minimize this more accurate metric [17]. Boundarycuts can also be employed in the bipartite graph model from x3.1.8

A more elegant expression of this metric is in the hypergraph model proposedby C�ataly�urek, Aykanat, Pinar, and Pinar [3,4,25]. A hypergraph is a gener-alization of a graph in which edges can include more than two vertices. Ahypergraph, G = (V;H), consists of a set of vertices, V , and a set of hyper-edges, H. Each hyperedge comprises a subset of vertices. Note that graphsare special cases of hypergraphs in which each hyperedge only contains twovertices. For our purposes, a hyperedges allow an alternative representation ofthe data dependencies. The partitioning problem is now to divide the verticesinto equally weighted sets so that few hyperedges cross between partitions.As we will discuss below, the hypergraph model has broader applicabilitythan the standard approach. But even for problems that can be describedwith the standard model, the hypergraph model is preferable since it correctlyminimizes the communication volume. To see this, consider a computation likethe one in Fig. 2 which can be describe by a standard undirected graph G =(V;E). Now construct an equivalent hypergraph (V;H) with jV j hyperedges.Each vertex vi G, corresponds to a hyperedge hi consisting of vi and all itsneighbors in G. A hyperedge re
ects all of the entities that either produce orconsume a piece of data. When the vertices are partitioned among processors,that piece of data must be communicated from the processor which producedit to to all those consume it. Thus, the communication associated with ahyperedge is one less than the number of processors its constituent verticesare partitioned among. (This corresponds to the boundary cut value fromthe discussion above.) So by partitioning the hypergraph in such a way thathyperedges are split among as few processors as possible, the model correctlyminimizes communication volume.In [4], C�ataly�urek and Aykanat apply this model to symmetric matrix-vectormultiplication. For a set of highly unstructured matrices from linear program-ming problems they report that the hypergraph model reduces communicationby over 30% on average over the standard partitioning approach. However, forreasons discussed in x2.1, the gains were more modest for matrices from gridcalculations, generally less than 10% [1].In addition to resolving the principle problem of the edge cut metric, thehypergraph approach is more expressive than the standard model. It can en-code problems in with unsymmetric dependencies and even problems in whichthe initial vertices di�er from the �nal vertices. In Figure 6, we show twodi�erent sketches of a hypergraph relating the data dependencies for the rect-angular matrix-vector multiply in Fig. 5. For example, hyperedge h2 containsall the vertices that need x2, i.e., fv2; v4g. In the left �gure the hyperedgesare illustrated by the ovals. In the right �gure the vertices are on one sideand hyperedges on the other, and each hyperedge is connected to the verticeswhich comprise it. We include this second hypergraph representation to un-derline the one-to-one relationship between hypergraphs and bipartite graphs.9

The hypergraph partitioning model is closely related to the bipartite modelfrom x3.1, but the partitioning objectives are di�erent.
v1

v3

v5
h1

h3

v2

v4

h2

v1

v2

v3

v4

v5

h1

h2

h3Fig. 6. Two Hypergraph Representations.The guiding principle in the construction of a hypergraph is that each hyper-edge contains the set of vertices which generate or need some data. This prin-ciple applies equally well to the case when dependencies are uni-directional,and it continues to correctly model the communication volume. However, thereis a subtle requirement that the data is produced by one of the vertices thatdepends on it. For example, in Fig. 6 we assume that the data associated withhyperedge h1 will live on the processor that owns vertex v5. If that is not thecase for some reason, e.g., h1 is the output of v1, then h1 should also includeits producing vertex, e.g., v1.The hypergraph model can also be used even in cases where the input andoutput data partitions are not identical, although it is perhaps not as nat-ural as the bipartite model in this case. We simply �nd the best partitionfor the computation nodes using a hypergraph partitioner, and this yields apartition of the output data. Then, rather than assuming the input data hasthe same partition as the output data, we can calculate the optimal inputdata partitioning as an assignment problem. So, the hypergraph model can bean alternative to the bipartite model when we are only encoding one opera-tion; however, the bipartite (or k-partite) models are still best when encodingmulti-step operations.In summary, we �nd the hypergraph model to be uniformly superior to thestandard model. It is also an attractive alternative to the bipartite modelfor unsymmetric problems when only one operation is being encoded. How-ever, the bipartite (or k-partite) models are still more powerful when encod-ing multi-phase operations. This is particularly true when the bipartite modelminimizes the boundary cut value as discussed above.3.3 Multi-Constraint PartitioningThe bipartite model from x3.1 is able to describe some types of multi-phase cal-culations. An alternative approach is the multi-constraint partitioning model10

of Karypis and Kumar [21]. Strictly speaking, the multi-constraint approach isnot an alternative to other models but rather an augmentation. In the multi-constraint model, each vertex is assigned a vector of k weights which representthe work associated with that vertex in each of k computational phases. Thegoal is now to partition the vertices of that graph in such a way that commu-nication is minimized and that the each of the k weights is balanced. In thisway, each phase of the computation will be load balanced. The edges in thegraph represent data dependencies in all the computational phases.This is a very general and powerful model. For instance, when solving a di�er-ential equation and also applying boundary conditions, each vertex can havetwo weights. The �rst weight will re
ect the work required by a grid pointin the solver, and the second can encode the work required for the boundarycondition. For vertices not on the boundary, the value of the second weightwill be zero. So partitioning this problem will ensure that the equation solveris balanced in such a way that each processor has an equal fraction of thesurface vertices.The multi-constraint model includes the bipartite (and k-partite) approachesas a special case. Given a bipartite graph G = (V1; V2; E), an equivalent multi-constraint model would have a set of vertices V = V1 [V2, and and edgesidentical to those in the bipartite graph. Each vertex would be assigned twoweights, one for the phase modeled by V1 and the second for the phase modeledby V2. Hence, each vertex would have one of its weights set to zero. Moregenerally, the multi-constraint model can encode multiple phases with distinctvertices via a model in which it includes the union of all vertices in all phases.As originally proposed by Karypis and Kumar, the multi-constraint modelattempts to minimize edge cuts, but this is an unnecessary restriction. Hyper-edges could be used or, equivalently, the boundary cut value from x3.2.Although the power of the model is attractive, partitioning general multi-criteria problems is di�cult. When other, simpler models can be applied, theymay be easier to work with.3.4 Skewed partitioningYet another alternative to the standard partitioning model is the skewed par-titioning partitioning approach developed by Pellegrini [24] and Hendrickson,Leland and Van Driessche [15]. As with the multi-constraint model, skewedpartitioning is really an augmentation of any of the other graph partitioningmodels rather than a true alternative. In the skewed model, each vertex isallowed to have a set of k preference values expressing its respective desire tobe in each of the k sets. When determining how to partition the vertices, these11

preference values are considered along with the metrics of communication cost.Preference values can be used in several di�erent ways to achieve di�erentobjectives. In dynamic load balancing it is desirable that the new partitionbe similar to the existing one to limit the amount of data that needs to bemoved. This can be encoded in the preference values by giving each datuma preference to remain in its current partition [27]. The magnitude of thepreference values can be adjusted to trade o� between partition quality andreduction in data movement.Another use for preference values is to encourage communicating objectsto be assigned to architecturally close processors to reduce message conges-tion [24,15]. Assume you partitioning for p processors by recursive applicationof a k-way partitioner. After the �rst partition, the graph is divided into kparts which are assigned to k portions of the parallel machine. When doingsubsequent partitions, each vertex can be assigned a preference to be assignedto a portion of the machine which is near its neighbors. In this way, the parti-tioning step is coupled with the problem of assigning partitions to processors.The result is a partition which exhibits better message locality. As before,the magnitude of the preferences can be altered to trade o� between partitionquality and message locality.This same idea was developed independently in the circuit placement com-munity to place circuit elements on a chip with short overall wire lengths [7].Several algorithms for this problem have been devised including multilevel andspectral approaches [15].
4 Partitioning AlgorithmsThe di�erent graph partitioning models reviewed in x3 are only viable if ef-�cient and e�ective algorithms can be developed to partition them. Fortu-nately, the multilevel paradigm for partitioning has proven to be quite robustand general. The multilevel approach was devised independently by severalresearchers in the early 90s [2,6,14] and popularized by the the Chaco [13] andMETIS [19] partitioning tools. The basic idea is quite simple. A large graph isapproximated by a sequence of smaller and smaller graphs. The smallest graphis partitioned using any suitable algorithm. This partition is then propagatedback through the sequence of larger and larger graphs, being re�ned along theway.Adapting the multilevel approach to a particular partitioning problem requiresthe following tools. 12

(1) A method for generating a sequence of smaller graphs which preserve theessential properties of the original.(2) An algorithm for partitioning the smallest graph.(3) A re�nement technique for improving the partition as it is propagatedback up to the original graph.These tools are generally straightforward to devise; however, the precise de-tails of these tools require some attention to the nature of the partitioningproblem being addressed. The generation of smaller graphs is typically donewith some kind of edge contraction scheme. Any existing algorithm whichhandles weights on edges and vertices can be used to partition the small-est graph. The re�nement often involves a greedy algorithm in the spirit ofKernighan-Lin [22].Following the multilevel paradigm, e�cient and e�ective partitioners havebeen developed for partitioning graphs to minimize edge cuts [2,14], minimizevertex cuts [16], and perform multi-constraint partitioning [21]. The sameapproach has been successfully used to partition hypergraphs to minimize cuthyperedges [6,18,5] and to partition bipartite graphs [12]. The
exibility ofthe technique makes it well suited to address a range of di�erent partitioningmodels and metrics.5 Conclusions and Directions for Further ResearchIn many respects, those of us working in the partitioning �eld have beenfortunate. The dominant application for our algorithms and tools has beendi�erential equation solvers. Whether solved implicitly or explicitly, these ap-plications produce dependency graphs which are fairly easy to partition, andlarge problems are computation rather than communication bound. The ap-plications achieved good parallel performance despite the limitations of ourapproaches.But di�erent applications are becoming common which are much more sen-sitive to partition quality. Challenging partitioning problems that arise frominterior point methods for linear programming, least squares problems, circuitsimulation, truncated singular value computations for latent semantic indexingin information retrieval, and other applications are revealing the limitationsof our traditional approaches. The standard graph partitioning methodologyoptimizes an inappropriate quantity, and its expressibility is too limited toaddress some important classes of applications.We surveyed several alternative models which address some of the problemswith the standard methodology. The bipartite model and the hypergraph13

model can both handle unsymmetric dependencies. The hypergraph approachcorrectly encodes communication volume, while the bipartite model and itsk-partite generalization have the advantage of being able to represent somemulti-phase calculations. The multi-constraint approach o�ers an alternativeway to represent multiple phases, while the skewed partitioning model pro-vides a mechanism for including extra information in a partitioning problemto, for example, reduce message congestion. However, these new models onlystart to address the problems detailed in x2. A number of important openproblems remain, including the following.(1) Partitioning for alternate objectives or multi-objectives. Mod-els which are well suited to minimizing the number of messages or themaximum communication per processor instead of the total communi-cation are still needed. Of further value would be hybrid models whichencapsulate several metrics. New partitioning metrics may lead to newalgorithmic challenges.(2) Partitioning for alternative architectures.Most of the work in parti-tioning techniques have been motivated by distributed memory architec-tures and has tried to minimize interprocessor communication. Similar,but not identical, issues occur in shared memory machines (SMPs). It isadvantageous to partition the shared memory between the processors tominimize cache coherence overhead. However, the precise objectives inthe shared memory setting may di�er from those for distributed memorymachines. There is little published work on this problem.Other architectural trends pose di�erent challenges for partitioners.One important development is the growing importance of heterogeneousmachines. Many current parallel machines consist of a collection of sharedmemory nodes networked together. These machines exhibit signi�cantnetwork heterogeneity. Accesses within an SMP are fast, but betweenSMPs are slow. It is unclear how best to partition for these architectures.Another important architectural development is the growing popular-ity of build-it-yourself parallel computers, epitomized by Beowulf-classmachines. Machines built in this way can exhibit both network and pro-cessor heterogeneity. The partitioner will need to worry about di�eringprocessor speeds and memory sizes, as well as varying access times. Ap-propriate machine models and partitioning approaches for heterogeneousarchitectures is largely an untouched area.(3) Parallel partitioning. Most of the work on parallel partitioning hasbeen done in the context of dynamic load balancing. Algorithmically, dy-namic load balancing is more challenging than the problems we have beendiscussing since there is a pre-existing partition. If the new partition de-viates signi�cantly from the current one, then a large remapping cost isincurred. This consideration does not occur in static settings and compli-cates the evaluation of dynamic partitioning algorithms. Independent ofdynamic problems, several trends are increasing the need for parallel par-14

titioners. First is the interest in very large meshes, which will not easily�t on a sequential machine and so must be partitioned in parallel. Second,for a more subtle reason, is the growing interest in heterogeneous parallelarchitectures. Generally, partitioning is performed as a preprocessing stepin which the user speci�es the number of processors the problem will runon. With heterogeneous parallel machines, the number of processors isinsu�cient | the partitioner should also know their relative speeds andmemory sizes. A user will want to run on whatever processors happen tobe idle when the job is ready, so it is impossible to provide this informa-tion to a partitioner in advance. A better solution is to partition on theparallel machine when the job is initiated. A number of parallel parti-tioners have been implemented including Jostle [28] and ParMETIS [20].This is an active area of research.(4) Partitioning for domain decomposition. Domain decomposition isa numerical technique in which a large grid is broken into smaller pieces.The solver works on individual subdomains �rst, and then couples themtogether. The properties of a good decomposition are not entirely clear,and they depend upon the details of the solution technique. But theyare almost certainly not identical to the criteria used to minimize par-allel communication. For instance, Farhat, et al. [8] argue that the do-mains must have good aspect ratios (e.g., not be long and skinny). It canalso be important that subdomains are connected, even though the bestpartitions for parallel communication need not be. For the most part,practitioners of domain decomposition have made due with partitioningalgorithms developed for other purposes, with perhaps some minor per-turbations at the end. But a concerted e�ort to devise schemes which meetthe need of this community could lead to signi�cant advances. Progressin this area will probably require a combination of ideas from numericalanalysis and graph algorithms.Despite the general feeling that partitioning is a mature area, there are anumber of open problems and many opportunities for signi�cant advances inthe state of the art. We expect to see a continuing stream of new insightsand approaches which more closely �t the di�erent classes of applications. Asthe hegemony of the standard approach crumbles, we foresee a balkanizationof the partitioning �eld as di�erent researchers choose to work on di�erentmodels and applications. This is a positive development to the extent thatthis more focused work leads to better tools for speci�c applications.References[1] C. Aykanat. Private Communication, 1998.[2] T. Bui and C. Jones. A heuristic for reducing �ll in sparse matrix factorization.15

In Proc. 6th SIAM Conf. Parallel Processing for Scienti�c Computing, pages445{452. SIAM, 1993.[3] U. V. C�ataly�urek and C. Aykanat. Decomposing linear programs forparallel solution. In A. Ferreira et al., editors, Parallel Algorithms forIrregularly Structured Problems, Third Interational Workshop, Irregular '96,Santa Barbara, CA, USA, August 19{21, 1996, number 1117 in Lecture Notesin Computer Science, pages 75{86. Springer-Verlag, 1996.[4] �U. C�ataly�urek and C. Aykanat. Hypergraph-partitioning based decompositionfor parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib.Sys., 1999. To appear.[5] �U. C�ataly�urek and C. Aykanat. PaToH a multilevel hypergraph partitioningtool for decomposing sparse matrices and partitioning VLSI circuits. TechnicalReport BU{CEIS{9902, Dept. Computer Engineering and Information Science,Bilkent University, Turkey, 1999.[6] J. Cong and M. L. Smith. A parallel bottom-up clustering algorithm withapplications to circuit partitioning in VLSI design. In Proc. 30th ACM/IEEEDesign Automation Conference, pages 755{760. ACM/IEEE, 1993.[7] A. E. Dunlop and B. W. Kernighan. A procedure for placement of standard-cellVLSI circuits. IEEE Trans. CAD, 4(1):92{98, Jan. 1985.[8] C. Farhat, N. Maman, and G. Brown. Mesh partitioning for implicitcomputation via domain decomposition: Impact and optimization of thesubdomain aspect ratio. Int. J. Num. Meth. Engrg., 38:989{1000, 1995.[9] M. Garey, D. Johnson, and L. Stockmeyer. Some simpli�ed NP-complete graphproblems. Theoretical Computer Science, 1:237{267, 1976.[10] B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor noclothes? In A. Ferreira et al., editors, Solving Irregularly Structured Problemsin Parallel: 5th International Symposium, Irregular '98, Berkeley, California,USA, August 9{11, 1998, number 1457 in Lecture Notes in Computer Science,pages 218{225. Springer-Verlag, 1998.[11] B. Hendrickson and T. G. Kolda. Partitioning sparse rectangular matricesfor parallel computations of Ax and AT v. In B. K�agstr�om et al., editors,Applied Parallel Computing in Large Scale Scienti�c and Industrial Problems,4th International Workshop, PARA'98, Ume�a, Sweden, June 14{17, 1998,number 1541 in Lecture Notes in Computer Science, pages 239{247. Springer-Verlag, 1998.[12] B. Hendrickson and T. G. Kolda. Partitioning nonsquare and nonsymmetricmatrices for parallel processing. SIAM J. Sci. Comput., to appear.[13] B. Hendrickson and R. Leland. The Chaco user's guide, version 2.0.Technical Report SAND95-2344, Sandia National Laboratories, Albuquerque,New Mexico, 1995. 16

[14] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.In Proc. 1995 ACM/IEEE Supercomputing Conference, San Diego, California,USA, December 3{8, 1995. ACM, New York, 1995.[15] B. Hendrickson, R. Leland, and R. V. Driessche. Skewed graph partitioning. InM. Heath et al., editors, Proc. 8th SIAM Conf. Parallel Processing for Scienti�cComputing. SIAM, 1997.[16] B. Hendrickson and E. Rothberg. Improving the runtime and quality of nesteddissection ordering. SIAM J. Sci. Comput., 20(2):468{489, 1998.[17] G. Karypis. Private Communication, 1998.[18] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Hypergraph partitioningusing multilevel approach: Application in VLSI domain. In Proc. 34thACM/IEEE Design Automation Conference. ACM/IEEE, 1997.[19] G. Karypis and V. Kumar. A fast and high quality multilevel schemefor partitioning irregular graphs. Technical Report 95-035, Dept. ComputerScience, Univ. Minnesota, Minneapolis, Minnesota, 1995.[20] G. Karypis and V. Kumar. Parallel multilevel graph partitioning. TechnicalReport 95-036, Dept. Computer Science, Univ. Minnesota, Minneapolis,Minnesota, 1995.[21] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graphpartitioning. Technical Report 98-019, Dept. Computer Science, Univ.Minnesota, Minneapolis, Minnesota, May 1998.[22] B. W. Kernighan and S. Lin. An e�cient heuristic procedure for partitioninggraphs. Bell System Technical Journal, 1970.[23] T. G. Kolda. Partitioning sparse rectangular matrices for parallel processing.In A. Ferreira et al., editors, Solving Irregularly Structured Problems in Parallel:5th International Symposium, Irregular '98, Berkeley, California, USA, August9{11, 1998, number 1457 in Lecture Notes in Computer Science, pages 68{79.Springer-Verlag, 1998.[24] F. Pellegrini. Static mapping by dual recursive bipartitioning of process andarchitecture graphs. In Proc. SHPCC'94, pages 486{493. IEEE, 1994.[25] A. Pinar, U. V. C�ataly�urek, C. Aykanat, and M. Pinar. Decomposing linearprograms for parallel solution. In J. Dongarra et al., editors, Applied ParallelComputing in Computations in Physics, Chemistry and Engineering Science:Second International Workshop, PARA '95, Lyngby, Denmark, August 21-24,1995, number 1041 in Lecture Notes in Computer Science, pages 473{482.Springer-Verlag, 1996.[26] S.-H. Teng. Points, Spheres and Separators: A Uni�ed Geometric Approachto Graph Partitioning. PhD thesis, Dept. Computer Science, Carnegie MellonUniv., Pittsburgh, PA, 1991. 17

[27] R. Van Driessche and D. Roose. Dynamic load balancing with a spectralbisection algorithm for the constrained graph partitioning problem. In High-Performance Computing and Networking, number 919 in Lecture Notes inComputer Science, pages 392{397. Springer, 1995. Proc. International Conf.and Exhibition, Milan, Italy, May 1995.[28] C. Walshaw, M. Cross, and M. Everett. Mesh partitioning and load-balancingfor distributed memory parallel systems. In B. Topping, editor, Proc. Parallel& Distributed Computing for Computational Mechanics, Lochinver, Scotland,1997, 1998.

18

