

GFN 223 : Série d'Exercices

Exercice 1

Soient trois individus X, Y et Z qui doivent choisir entre les projets d'investissements A, B et C. La distribution de probabilité des taux de rendements attendus est la suivante :

Projets	Taux de rendement attendus				
d'investissement	-3%	0%	3%	6%	9%
/ Probabilités					
A	0.5				0.5
В		0.5		0.5	
С			1		

Les fonctions d'utilité de ces trois personnes sont les suivantes :

$$X : U(r) = 100r - 50r^2$$

$$Y : U(r) = 100r$$

$$Z: U(r) = 100r + 50r^2$$

Avec r le taux de rendement de l'investissement.

- 1) Quels choix feront les investisseurs X, Y et Z entre les projets A, B et C?
- 2) Pour chacun des investisseurs, calculer U' et dire pour quelle valeur de r, U'>0.

Puis calculer U'' et en déduire l'attitude de la personne considérée face au risque.

3) Comparer les projets A, B et C suivant le critère moyenne-variance.

Exercice 2:

Soient XA et XB les rendements de deux actions A et B.

Cas n° 1	Cas n° 2	Cas n° 3
$\sigma(XA) \ge \sigma(XB)$	$\sigma(XA) = \sigma(XB)$	$\sigma(XA) < \sigma(XB)$
E(XA) = E(XB)	E(XA) > E(XB)	E(XA) < E(XB)

Quel serait votre choix d'investissement, si :

- 1) Vous êtes averse au risque?
- 2) Vous êtes preneur de risque?

Exercice 3:

Un investisseur a la possibilité d'acquérir un portefeuille d'actions, selon les compositions suivantes :

- 100% des titres A
- 100% des titres B
- 50% des titres A et 50% des titres B

Afin de le conseiller à faire un choix, vous disposez des informations suivantes :

Probabilité	Rentabilité des	Rentabilité des	Rentabilité du
	titres A	titres B	portefeuille AB
0.3	10	-3	?
0.4	5	6	?
0.3	-5	9	?

- 1) Calculer la rentabilité du portefeuille AB
- 2) Calculer la variance ainsi que l'écart des 3 types de portefeuilles possibles
- 3) Représentez les 3 situations dans l'espace rentabilité-risque.

Exercice 4:

Vous disposez des informations suivantes, concernant les actions X et Y :

	Probabilité	X (%)	Y(%)
I	0.2	18	0
II	0.2	5	-3
III	0.2	12	15
IV	0.2	4	12
V	0.2	6	1

- 1) Calculer la rentabilité espérée, la variance de ces actions, ainsi que la covariance (X,Y).
- 2) Supposons la composition suivante de différents portefeuilles :

% in X	125	100	75	50	25	0	-25
% in Y	-25	0	25	50	75	100	125

Calculer pour chaque portefeuille l'espérance de rentabilité, la variance ainsi que l'écart type.

- 3) Déterminer le portefeuille de variance minimale.
- 4) Calculer la covariance entre les portefeuilles A (constitué à 75% de X) et B (constitué à 25% de Y).

5) Calculer la covariance entre le portefeuille de variance minimum et un portefeuille efficient

Exercice 5:

Afin d'effectuer un placement, vous disposez des informations concernant les titres A, B et les bons du trésor. La distribution des rendements selon la conjoncture pour chaque titre est la suivante :

Tendance du marché	En hausse	En baisse	En crise
Probabilité	0.5	0.4	0.1
A	0.16	0.07	-0.25
В	0.05	-0.01	0.35
Bons de trésor	0.06	0.06	0.06

1) Quel est le taux de rendement espéré et l'écart type de chacun des portefeuilles suivants :

- a- 100% dans A
- b- 100% dans B
- c- 100% dans les bons du trésor
- d- 50% dans A et 50% dans B
- e- 1/3 dans A, 1/3 dans B et 1/3 dans les bons du trésor
 - 2) Votre niveau de satisfaction peut être décrit par la fonction d'utilité suivante :

$$U = E(R_p) - 0.5 A\sigma^2$$

Vous estimez votre coefficient d'aversion envers le risque comme étant égal à 5. Des portefeuilles précédemment analysés, lequel préférez-vous ?

- 3) Un de vos clients décide d'investir 70% dans le portefeuille (4) et 30% dans les bons du trésor. Calculer le rendement espéré et l'écart type du portefeuille de votre client.
- 4) Présenter la composition du portefeuille de votre client
- 5) Quel est le ratio de la prime de risque par unité de risque du portefeuille en question ?

Exercice 6:

Sur un marché, le domaine des portefeuilles risqués est déterminé *par la frontière efficiente* telle que établie par Markowitz dont l'équation :

$$\sigma_P^2 = 2.5.E_P^2 - 37.5E_P + 150$$

Soit P₁, P₂, P₃ trois portefeuilles dont les taux de rendements espérés et les volatilités sont donnés (en %) par :

Portefeuilles	Espérance E _p	Ecart type σ_p
1	8	5
2	10	5
3	20	20

- 1) Les portefeuilles P₁, P₂ et P₃ sont-ils efficients au sens de Markowitz ?
- 2) Déterminer les caractéristiques (l'espérance et la variance du rendement) du portefeuille *efficient* P4 dont le risque est minimum.
- 3) Tracer approximativement la frontière efficiente dans le plan (σ_P^2, E_P)

Soit un investisseur dont les courbes d'indifférence sont de la forme : $E_P - \frac{\sigma_P^2}{10} = \mu$

- 4) Déterminer les caractéristiques du portefeuille risqué *efficient* que choisira cet investisseur ainsi que son coefficient de satisfaction μ.
- 5) On introduit un actif sans risque de rendement 5%. Le portefeuille du marché a un rendement espéré E_M = 9.5 et un écart-type σ_M = 4.4.

Quelles sont les caractéristiques du portefeuille optimal de cet investisseur ainsi que son coefficient de satisfaction μ ?

Exercice 7:

A et B étant les seuls actifs sur le marché, leur matrice de variance-covariance est la suivante :

$$\begin{bmatrix} 0.0081 & 0 \\ 0 & 0.0025 \end{bmatrix}$$

Les actifs A et B ont des rendements espérés respectifs de 34% et 20%.

Sur un marché M1, supposer que l'investisseur I choisit le portefeuille de marché composé de 75% de l'actif A et 25% de l'actif B et que l'investisseur J, sur un marché M2, choisit son portefeuille de marché composé équitablement de A et B.

- 1) Quel est le bêta que les investisseurs calculeront pour l'actif A. Commenter vos résultats.
- 2) Sachant que les deux investisseurs prêtent et empruntent au même taux sans risque (R_f = 7%), quelle est de ces trois propositions celle qui est vraie et pourquoi ?
- a. L'investisseur I exigera un rendement plus élevé sur A que l'investisseur J.

- b. Les investisseurs I et J exigeront le même taux de rendement sur A.
- c. L'investisseur J exigera un rendement plus élevé sur A que l'investisseur I.

Exercice 8:

Dans le cadre du MEDAF, vous disposez des informations suivantes :

$$E(R_m) = 18\%$$
, $\sigma(R_m) = 24\%$, $R_f = 8.5\%$

- 1) Calculer l'écart-type des rendements ainsi que le coefficient de sensibilité du portefeuille X qui se trouve sur la frontière d'efficience et qui a un rendement espéré de 20%.
- 2) Sachant que Cov $(R_x, R_m) = 0.06972$, calculer le coefficient de corrélation du portefeuille X avec le marché. Que peut-on conclure?
- 3) Calculer le risque non diversifiable et le risque spécifique de l'action Y dont l'espérance requise et l'écart-type s'élèvent respectivement à 30% et 70%. Commenter vos résultats.

Exercice 9:

Un analyste financier identifie deux facteurs de risque pour trois titres financiers A, B et C. Par ailleurs, il estime qu'à l'équilibre, les rentabilités estimées sur ces titres et les sensibilités aux deux facteurs peuvent être résumées par le tableau suivant :

Titres	E(R _i)	β_{i1}	β_{i2}
A	12%	0.8	1.9
В	13%	1	2
С	14.5%	1.8	1.5

- 1) Selon *l'Arbitrage Pricing Theory*, quelle sera la relation qui permet d'évaluer le rendement d'un titre?
- 2) Quelle sera l'espérance de rendement d'un portefeuille X, constitué équitablement de l'actif sans risque et du titre A, ainsi que, les coefficients de sensibilités ?
- 3) Soit un portefeuille Y dont l'espérance de rendement est de 10%, β_{i1} = 0.4 et β_{i2} = 0.95. Existe-t-il des opportunités d'arbitrage ? Si oui, lesquelles?

Exercice 10:

Vous disposez des informations suivantes :

Actif i	Rendement espéré à		Risque global de i : σ _i	
	l'équilibre de i (en %)		(en %)	$i : \sigma_{\epsilon i}^2 \text{ (en \%)}$
A	?	0.8	?	81
В	19	1.5	?	36
С	15	?	12	0
D	7	0	0	?
Е	16.6	?	15	?

I.

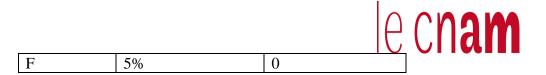
- 1. Rappeler l'équation du modèle de marché ainsi que ses hypothèses.
- 2. A partir de l'actif D, déterminer le rendement de l'actif sans risque. En déduire le rendement espéré du portefeuille de marché ainsi que son écart-type. Que pensez-vous du risque total de l'actif C par rapport au risque de marché.
- 3. Compléter les données manquantes dans le tableau.

II.

Les investisseurs X et Y disposant chacun, d'un budget s'élevant à $40\ 000\ \in$ et hésitent entre deux portefeuilles. Le premier P1 composé des titres A et B, le second est un emprunt de $10\ 000\ \in$ au taux sans risque. La proportion du titre B dans le portefeuille P1 représente 3/2 celle de A. Et $\rho_{A,B}=0$. Le portefeuille P2 est composé de $100\ \%$ de titres E.

Sachant que la fonction d'utilité des investisseurs est décrite par la relation suivante :

$$U_i = E(Rp) - 0.5.\Theta_i.\sigma^2(Rp)$$


Avec
$$\Theta_X = 5$$
 et $\Theta_Y = -2$

- 1. Calculer le rendement et le risque de chacun des deux portefeuilles.
- 2. Quel est le choix de chaque investisseur.
- 3. Donner la signification de Θ_i

Exercice 11:

Le tableau suivant présente les rentabilités anticipées et les risques systématiques des actions tels que calculés par un analyste financier d'une grande banque :

Titre	Rentabilité anticipée	Risque systémique
A	20%	1.4
В	8%	0.8
С	14%	1
D	6.8%	0.2
Е	20%	1.8

- 1) Présenter les hypothèses qui fondent le MEDAF, sont-elles réalistes ?
- 2) Ecrire l'équation du MEDAF utilisé par cet analyste financier.
- 3) Quelle serait la composition du portefeuille d'un investisseur qui opterait pour une stratégie passive et un risque systématique de 0.2 ?
- 4) Quelle serait la composition du portefeuille d'un investisseur qui opterait pour une stratégie active et un risque systématique de 0.2 ?
- 5) Qu'est-ce qui différencie ces deux investisseurs?