
Fixed-Point Toolbox 2
Design and execute fixed-point algorithms and analyze fixed-point data

Key features

■ Support for fixed-point data types in MATLAB

■ Fixed-point arithmetic and logic operators

■ Support for exchanging fixed-point data between MATLAB
and Simulink

■ Tools for floating-to-fixed-point conversion, including data
logging and data-type override

■ Ability to accelerate execution speeds of fixed-point algorithms
in the MATLAB workspace

Fixed-Point Toolbox provides fixed-point data
types and arithmetic in MATLAB®. You can
use it to design fixed-point algorithms using
MATLAB syntax and execute these algorithms
at compiled C-code speed. You can reuse these
fixed-point algorithms in Simulink® and pass
fixed-point data to and from Simulink models
to facilitate the simulation, implementation,
and analysis of fixed-point systems. You can
also generate test sequences for verifying fixed-
point software and hardware implementations.

Using Fixed-Point Data Types
Together, Fixed-Point Toolbox and MATLAB
provide an environment for developing,
implementing, and verifying algorithms for
fixed-point designs. The toolbox supports
arbitrary word lengths from 2 to 65,535 bits
for fixed-point data types, enabling you to
capture bit-true fixed-point behaviors in the
MATLAB workspace.

Fixed-Point Arithmetic
Fixed-Point Toolbox uses MATLAB syntax to
support fixed-point arithmetic. The toolbox
provides the following functions and operators:

Basic arithmetic operations, including
addition, subtraction and multiplication
A division function
A square-root function
Relational, logical, and bitwise operators
Statistical functions, such as min and max
User-selected overflow and rounding modes
to govern all arithmetic

The toolbox lets you use four modes for
performing fixed-point arithmetic:

Fully automatic mode, enabling you to use up
to 65,535 bits for the sum or product
Fully specified mode, letting you indicate the
word length and binary point location for the
sum or product
Two partially automatic modes, in which
the binary point location is set auto-
matically but you can specify the word
length of the sum or product

•

•
•
•
•
•

•

•

•

Accelerating the pace of engineering and science

>> A = fi(pi)
A =
 3.1416

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 13

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

Fixed-point representation of π is created with a default 16-bit word length and best-

precision fraction length. Other properties of the fixed-point object can also be defined.

Using the built-in plotting and visualization
functions in MATLAB, you can visualize fixed-
point data objects created in Fixed-Point
Toolbox and analyze the results of your fixed-
point design.

Fixed-Point Data Exchange Between
MATLAB and Simulink
The fixed-point operations in Fixed-Point
Toolbox complement the fixed-point capa-
bilities in Simulink (available separately).
You can use fixed-point data objects to pass
fixed-point data between the MATLAB
workspace and Simulink models. Fixed-Point
Toolbox also supports the design, analysis,
and implementation of fixed-point digital
filters with Filter Design Toolbox (also avail-
able separately). You can quantize filter
coefficients and other data with Fixed-Point
Toolbox and then use Filter Design Toolbox
functions to construct an appropriate filter
structure.

Floating-to-Fixed-Point Conversion
Fixed-Point Toolbox provides analysis tools
for efficiently converting a design from
floating-point to fixed-point representation.

The data logging tools let you record
minimum or maximum data values and
pinpoint when overflow or underflow
occurs during fixed-point operations. The
data-type override tools let you analyze a
fixed-point algorithm by switching the data
type of variables between floating-point or
fixed-point. With this analysis, you can
observe the dynamic range of variables
involved in your M-code and ensure that the
algorithm behaves consistently in floating-
point and fixed-point representations.

Accelerating the Execution Speed of
Fixed-Point Algorithms in MATLAB
The emlmex function of Fixed-Point
Toolbox lets you significantly accelerate the
execution speed of fixed-point algorithms.
With emlmex you can generate a compiled
MEX version of your M-code, provided that
the M-code is composed from a defined
subset of MATLAB language. This MEX
version runs at compiled C-code speed,
much faster than the original M-code.

Required Products
MATLAB

91206v01 03/07

© 2007 MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks and
SimBiology, SimEvents, and SimHydraulics are trademarks of The MathWorks, Inc. Other product or brand names are trademarks or
registered trademarks of their respective holders.

Resources

visit
www.mathworks.com

technical support
www.mathworks.com/support

online user community
www.mathworks.com/matlabcentral

Demos
www.mathworks.com/demos

training services
www.mathworks.com/training

thirD-party proDucts anD services
www.mathworks.com/connections

WorlDWiDe contacts
www.mathworks.com/contact

e-mail
info@mathworks.com

Accelerating the pace of engineering and science

0 20 40 60 80 100
-2

0

2
Original signal

0 20 40 60 80 100
-1

0

1
Fixed-point output

0 20 40 60 80 100
-1

0

1
Floating-point output

0 20 40 60 80 100
-2

0

2
x 10-4 Difference between fixed and float

Floating-point variable definitions
b = [0.29864501953125 0.153839111328125 0.298583984375];
a = [-0.6568603515625 0.59185791015625];
N = 100; t = (0:N-1)';
x = sin(pi*0.2*t) + sin(pi*0.583*t);
z = zeros(2,1);
y = zeros(size(x));

Fixed-point variable definitions
b = fi(b);
a = fi(a);
x = fi(x);
z = fi(z);
y = fi(y);

Same M-file algorithm used for both
for k=1:length(x)
 y(k) = b(1)*x(k) + z(1);
 z(1) = (b(2)*x(k) + z(2)) - a(1)*y(k);
 z(2) = b(3)*x(k) - a(2)*y(k);
end

Plot of the algorithm output in both

16-bit fixed point and double-

precision floating point. Using

Fixed-Point Toolbox, you can

develop data-type-independent

algorithms and run them with

fixed-point variables.

Related Products
Filter Design Toolbox. Design and analyze
fixed-point, adaptive, and multirate filters

Signal Processing Blockset. Design and simulate
signal processing systems and devices

Signal Processing Toolbox. Perform
signal processing, analysis, and algorithm
development

Simulink® Fixed Point. Design and simulate
fixed-point systems

For more information on related products,
visit www.mathworks.com/products/fixed

Platform and System Requirements
For platform and system requirements, visit
www.mathworks.com/products/fixed ■

sample functions
Construct a fixed-point object

Perform basic fixed-point arithmetic

Perform relational, logical, and bitwise operations

Convert to/from binary, hex, and native integers

Estimate the dynamic range of data using double overrides and data logging

