
Debugging with GDB
The gnu Source-Level Debugger

Ninth Edition, for GDB version 5.3
December 2001

Richard Stallman, Roland Pesch, Stan Shebs, et al.

(Send bugs and comments on GDB to bug-gdb@gnu.org.)
Debugging with GDB

TEXinfo 2002-06-04.06

Copyright c© 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002 Free Software Foundation, Inc.

Published by the Free Software Foundation
59 Temple Place - Suite 330,
Boston, MA 02111-1307 USA
ISBN 1-882114-77-9

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Free Software” and “Free
Software Needs Free Documentation”, with the Front-Cover Texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below.
(a) The Free Software Foundation’s Back-Cover Text is: “You have freedom to copy and
modify this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Table of Contents

Summary of GDB . 1
Free software . 1
Free Software Needs Free Documentation . 1
Contributors to GDB . 3

1 A Sample GDB Session . 7

2 Getting In and Out of GDB 11
2.1 Invoking GDB . 11

2.1.1 Choosing files . 12
2.1.2 Choosing modes . 13

2.2 Quitting GDB . 15
2.3 Shell commands . 15

3 GDB Commands . 17
3.1 Command syntax . 17
3.2 Command completion . 17
3.3 Getting help . 19

4 Running Programs Under GDB 23
4.1 Compiling for debugging . 23
4.2 Starting your program . 24
4.3 Your program’s arguments . 25
4.4 Your program’s environment . 25
4.5 Your program’s working directory . 26
4.6 Your program’s input and output . 26
4.7 Debugging an already-running process 27
4.8 Killing the child process . 28
4.9 Debugging programs with multiple threads 28
4.10 Debugging programs with multiple processes 30

5 Stopping and Continuing 33
5.1 Breakpoints, watchpoints, and catchpoints 33

5.1.1 Setting breakpoints . 34
5.1.2 Setting watchpoints . 37
5.1.3 Setting catchpoints . 39
5.1.4 Deleting breakpoints . 40
5.1.5 Disabling breakpoints . 41
5.1.6 Break conditions. 42
5.1.7 Breakpoint command lists . 43
5.1.8 Breakpoint menus . 44

ii Debugging with GDB

5.1.9 “Cannot insert breakpoints” . 45
5.2 Continuing and stepping . 45
5.3 Signals . 48
5.4 Stopping and starting multi-thread programs 50

6 Examining the Stack . 53
6.1 Stack frames . 53
6.2 Backtraces . 54
6.3 Selecting a frame . 55
6.4 Information about a frame . 56

7 Examining Source Files 57
7.1 Printing source lines . 57
7.2 Searching source files . 58
7.3 Specifying source directories . 59
7.4 Source and machine code . 59

8 Examining Data . 63
8.1 Expressions . 63
8.2 Program variables . 64
8.3 Artificial arrays . 65
8.4 Output formats . 66
8.5 Examining memory . 67
8.6 Automatic display . 68
8.7 Print settings . 70
8.8 Value history . 75
8.9 Convenience variables . 76
8.10 Registers . 77
8.11 Floating point hardware . 78
8.12 Vector Unit . 78
8.13 Memory region attributes . 78

8.13.1 Attributes . 79
8.13.1.1 Memory Access Mode 79
8.13.1.2 Memory Access Size 80
8.13.1.3 Data Cache . 80

8.14 Copy between memory and a file . 80

9 C Preprocessor Macros 83

iii

10 Tracepoints . 87
10.1 Commands to Set Tracepoints . 87

10.1.1 Create and Delete Tracepoints 87
10.1.2 Enable and Disable Tracepoints 88
10.1.3 Tracepoint Passcounts . 88
10.1.4 Tracepoint Action Lists . 89
10.1.5 Listing Tracepoints . 90
10.1.6 Starting and Stopping Trace Experiment 91

10.2 Using the collected data . 91
10.2.1 tfind n . 91
10.2.2 tdump . 93
10.2.3 save-tracepoints filename 94

10.3 Convenience Variables for Tracepoints 94

11 Debugging Programs That Use Overlays . . 97
11.1 How Overlays Work . 97
11.2 Overlay Commands . 98
11.3 Automatic Overlay Debugging . 100
11.4 Overlay Sample Program . 101

12 Using GDB with Different Languages 103
12.1 Switching between source languages 103

12.1.1 List of filename extensions and languages 103
12.1.2 Setting the working language 104
12.1.3 Having GDB infer the source language 104

12.2 Displaying the language . 104
12.3 Type and range checking . 105

12.3.1 An overview of type checking 105
12.3.2 An overview of range checking 106

12.4 Supported languages . 107
12.4.1 C and C++ . 107

12.4.1.1 C and C++ operators 108
12.4.1.2 C and C++ constants 109
12.4.1.3 C++ expressions . 110
12.4.1.4 C and C++ defaults 111
12.4.1.5 C and C++ type and range checks 111
12.4.1.6 GDB and C . 111
12.4.1.7 GDB features for C++ 112

12.4.2 Modula-2 . 113
12.4.2.1 Operators . 113
12.4.2.2 Built-in functions and procedures 114
12.4.2.3 Constants . 115
12.4.2.4 Modula-2 defaults 116
12.4.2.5 Deviations from standard Modula-2 . . 116
12.4.2.6 Modula-2 type and range checks 116
12.4.2.7 The scope operators :: and 117
12.4.2.8 GDB and Modula-2 117

iv Debugging with GDB

13 Examining the Symbol Table 119

14 Altering Execution . 123
14.1 Assignment to variables . 123
14.2 Continuing at a different address . 124
14.3 Giving your program a signal . 125
14.4 Returning from a function . 125
14.5 Calling program functions . 126
14.6 Patching programs . 126

15 GDB Files . 127
15.1 Commands to specify files . 127
15.2 Errors reading symbol files . 132

16 Specifying a Debugging Target 135
16.1 Active targets . 135
16.2 Commands for managing targets . 135
16.3 Choosing target byte order . 137
16.4 Remote debugging . 137
16.5 Kernel Object Display . 138

17 Debugging remote programs 139
17.1 Using the gdbserver program. 139
17.2 Using the gdbserve.nlm program . 140
17.3 Implementing a remote stub . 141

17.3.1 What the stub can do for you 142
17.3.2 What you must do for the stub 142
17.3.3 Putting it all together . 144

18 Configuration-Specific Information. 147
18.1 Native . 147

18.1.1 HP-UX . 147
18.1.2 SVR4 process information . 147
18.1.3 Features for Debugging djgpp Programs 147
18.1.4 Features for Debugging MS Windows PE

executables . 149
18.2 Embedded Operating Systems . 150

18.2.1 Using GDB with VxWorks 150
18.2.1.1 Connecting to VxWorks 151
18.2.1.2 VxWorks download 151
18.2.1.3 Running tasks . 152

18.3 Embedded Processors . 152
18.3.1 ARM . 152
18.3.2 Hitachi H8/300 . 152

18.3.2.1 Connecting to Hitachi boards 153
18.3.2.2 Using the E7000 in-circuit emulator . . 154

v

18.3.2.3 Special GDB commands for Hitachi micros
. 155

18.3.3 H8/500 . 155
18.3.4 Intel i960 . 155

18.3.4.1 Startup with Nindy 156
18.3.4.2 Options for Nindy 156
18.3.4.3 Nindy reset command 156

18.3.5 Mitsubishi M32R/D . 156
18.3.6 M68k . 157
18.3.7 MIPS Embedded . 157
18.3.8 PowerPC . 159
18.3.9 HP PA Embedded . 159
18.3.10 Hitachi SH . 159
18.3.11 Tsqware Sparclet . 160

18.3.11.1 Setting file to debug. 160
18.3.11.2 Connecting to Sparclet 160
18.3.11.3 Sparclet download 161
18.3.11.4 Running and debugging 161

18.3.12 Fujitsu Sparclite . 161
18.3.13 Tandem ST2000 . 161
18.3.14 Zilog Z8000 . 162

18.4 Architectures . 162
18.4.1 A29K . 163
18.4.2 Alpha . 163
18.4.3 MIPS . 163

19 Controlling GDB . 165
19.1 Prompt . 165
19.2 Command editing . 165
19.3 Command history . 165
19.4 Screen size . 167
19.5 Numbers . 167
19.6 Optional warnings and messages . 168
19.7 Optional messages about internal happenings. 169

20 Canned Sequences of Commands 171
20.1 User-defined commands . 171
20.2 User-defined command hooks . 172
20.3 Command files . 173
20.4 Commands for controlled output . 174

21 GDB Text User Interface 177
21.1 TUI overview . 177
21.2 TUI Key Bindings . 178
21.3 TUI Single Key Mode . 179
21.4 TUI specific commands . 179
21.5 TUI configuration variables . 180

vi Debugging with GDB

22 Using GDB under gnu Emacs 183

23 GDB Annotations . 185
23.1 What is an Annotation? . 185
23.2 The Server Prefix . 185
23.3 Values. 186
23.4 Frames . 187
23.5 Displays . 189
23.6 Annotation for GDB Input. 189
23.7 Errors . 190
23.8 Information on Breakpoints . 190
23.9 Invalidation Notices . 191
23.10 Running the Program . 191
23.11 Displaying Source . 192
23.12 Annotations We Might Want in the Future 192

24 The gdb/mi Interface 193
Function and Purpose . 193
Notation and Terminology . 193
24.1 gdb/mi Command Syntax . 193

24.1.1 gdb/mi Input Syntax . 193
24.1.2 gdb/mi Output Syntax . 194
24.1.3 Simple Examples of gdb/mi Interaction 196

24.2 gdb/mi Compatibility with CLI . 197
24.3 gdb/mi Output Records . 197

24.3.1 gdb/mi Result Records . 197
24.3.2 gdb/mi Stream Records . 197
24.3.3 gdb/mi Out-of-band Records 198

24.4 gdb/mi Command Description Format 198
24.5 gdb/mi Breakpoint table commands 199
24.6 gdb/mi Data Manipulation . 207
24.7 gdb/mi Program control . 217
24.8 Miscellaneous GDB commands in gdb/mi. 227
24.9 gdb/mi Stack Manipulation Commands 229
24.10 gdb/mi Symbol Query Commands 234
24.11 gdb/mi Target Manipulation Commands 237
24.12 gdb/mi Thread Commands . 242
24.13 gdb/mi Tracepoint Commands. 244
24.14 gdb/mi Variable Objects . 244

25 Reporting Bugs in GDB 249
25.1 Have you found a bug? . 249
25.2 How to report bugs . 249

vii

26 Command Line Editing 253
26.1 Introduction to Line Editing . 253
26.2 Readline Interaction . 253

26.2.1 Readline Bare Essentials . 253
26.2.2 Readline Movement Commands 254
26.2.3 Readline Killing Commands 254
26.2.4 Readline Arguments . 255
26.2.5 Searching for Commands in the History 255

26.3 Readline Init File . 256
26.3.1 Readline Init File Syntax . 256
26.3.2 Conditional Init Constructs 260
26.3.3 Sample Init File . 261

26.4 Bindable Readline Commands . 264
26.4.1 Commands For Moving . 264
26.4.2 Commands For Manipulating The History 264
26.4.3 Commands For Changing Text 265
26.4.4 Killing And Yanking . 266
26.4.5 Specifying Numeric Arguments 267
26.4.6 Letting Readline Type For You 268
26.4.7 Keyboard Macros . 268
26.4.8 Some Miscellaneous Commands 269

26.5 Readline vi Mode . 270

27 Using History Interactively. 271
27.1 History Expansion . 271

27.1.1 Event Designators . 271
27.1.2 Word Designators . 272
27.1.3 Modifiers . 272

Appendix A Formatting Documentation 275

Appendix B Installing GDB 277
B.1 Compiling GDB in another directory 278
B.2 Specifying names for hosts and targets 279
B.3 configure options . 279

Appendix C Maintenance Commands 281

Appendix D GDB Remote Serial Protocol . . 283
D.1 Overview . 283
D.2 Packets . 284
D.3 Stop Reply Packets . 289
D.4 General Query Packets . 290
D.5 Register Packet Format . 292
D.6 Examples . 293

viii Debugging with GDB

Appendix E GNU GENERAL PUBLIC
LICENSE . 295
Preamble . 295
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 296
How to Apply These Terms to Your New Programs 300

Appendix F GNU Free Documentation License
. 303
ADDENDUM: How to use this License for your documents 308

Index . 309

Summary of GDB 1

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what is going on “inside”
another program while it executes—or what another program was doing at the moment it
crashed.

GDB can do four main kinds of things (plus other things in support of these) to help
you catch bugs in the act:
• Start your program, specifying anything that might affect its behavior.
• Make your program stop on specified conditions.
• Examine what has happened, when your program has stopped.
• Change things in your program, so you can experiment with correcting the effects of

one bug and go on to learn about another.

You can use GDB to debug programs written in C and C++. For more information, see
Section 12.4 [Supported languages], page 107. For more information, see Section 12.4.1 [C
and C++], page 107.

Support for Modula-2 is partial. For information on Modula-2, see Section 12.4.2
[Modula-2], page 113.

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work. GDB does not support entering expressions, printing values, or
similar features using Pascal syntax.

GDB can be used to debug programs written in Fortran, although it may be necessary
to refer to some variables with a trailing underscore.

Free software

GDB is free software, protected by the gnu General Public License (GPL). The GPL
gives you the freedom to copy or adapt a licensed program—but every person getting a
copy also gets with it the freedom to modify that copy (which means that they must get
access to the source code), and the freedom to distribute further copies. Typical software
companies use copyrights to limit your freedoms; the Free Software Foundation uses the
GPL to preserve these freedoms.

Fundamentally, the General Public License is a license which says that you have these
freedoms and that you cannot take these freedoms away from anyone else.

Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in the software—it is
the lack of good free documentation that we can include with the free software. Many of our
most important programs do not come with free reference manuals and free introductory
texts. Documentation is an essential part of any software package; when an important free
software package does not come with a free manual and a free tutorial, that is a major gap.
We have many such gaps today.

Consider Perl, for instance. The tutorial manuals that people normally use are non-free.
How did this come about? Because the authors of those manuals published them with

2 Debugging with GDB

restrictive terms—no copying, no modification, source files not available—which exclude
them from the free software world.

That wasn’t the first time this sort of thing happened, and it was far from the last.
Many times we have heard a GNU user eagerly describe a manual that he is writing, his
intended contribution to the community, only to learn that he had ruined everything by
signing a publication contract to make it non-free.

Free documentation, like free software, is a matter of freedom, not price. The problem
with the non-free manual is not that publishers charge a price for printed copies—that in
itself is fine. (The Free Software Foundation sells printed copies of manuals, too.) The
problem is the restrictions on the use of the manual. Free manuals are available in source
code form, and give you permission to copy and modify. Non-free manuals do not allow
this.

The criteria of freedom for a free manual are roughly the same as for free software.
Redistribution (including the normal kinds of commercial redistribution) must be permitted,
so that the manual can accompany every copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too. When people mod-
ify the software, adding or changing features, if they are conscientious they will change
the manual too—so they can provide accurate and clear documentation for the modified
program. A manual that leaves you no choice but to write a new manual to document a
changed version of the program is not really available to our community.

Some kinds of limits on the way modification is handled are acceptable. For example,
requirements to preserve the original author’s copyright notice, the distribution terms, or
the list of authors, are ok. It is also no problem to require modified versions to include
notice that they were modified. Even entire sections that may not be deleted or changed
are acceptable, as long as they deal with nontechnical topics (like this one). These kinds of
restrictions are acceptable because they don’t obstruct the community’s normal use of the
manual.

However, it must be possible to modify all the technical content of the manual, and then
distribute the result in all the usual media, through all the usual channels. Otherwise, the
restrictions obstruct the use of the manual, it is not free, and we need another manual to
replace it.

Please spread the word about this issue. Our community continues to lose manuals
to proprietary publishing. If we spread the word that free software needs free reference
manuals and free tutorials, perhaps the next person who wants to contribute by writing
documentation will realize, before it is too late, that only free manuals contribute to the
free software community.

If you are writing documentation, please insist on publishing it under the GNU Free
Documentation License or another free documentation license. Remember that this deci-
sion requires your approval—you don’t have to let the publisher decide. Some commercial
publishers will use a free license if you insist, but they will not propose the option; it is up
to you to raise the issue and say firmly that this is what you want. If the publisher you
are dealing with refuses, please try other publishers. If you’re not sure whether a proposed
license is free, write to licensing@gnu.org.

You can encourage commercial publishers to sell more free, copylefted manuals and
tutorials by buying them, and particularly by buying copies from the publishers that paid

mailto:licensing@gnu.org

Summary of GDB 3

for their writing or for major improvements. Meanwhile, try to avoid buying non-free
documentation at all. Check the distribution terms of a manual before you buy it, and
insist that whoever seeks your business must respect your freedom. Check the history of
the book, and try to reward the publishers that have paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation published by other
publishers, at http://www.fsf.org/doc/other-free-books.html.

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other gnu programs.
Many others have contributed to its development. This section attempts to credit major
contributors. One of the virtues of free software is that everyone is free to contribute to
it; with regret, we cannot actually acknowledge everyone here. The file ‘ChangeLog’ in the
GDB distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.
Plea: Additions to this section are particularly welcome. If you or your friends
(or enemies, to be evenhanded) have been unfairly omitted from this list, we
would like to add your names!

So that they may not regard their many labors as thankless, we particularly thank those
who shepherded GDB through major releases: Andrew Cagney (releases 5.3, 5.2, 5.1 and
5.0); Jim Blandy (release 4.18); Jason Molenda (release 4.17); Stan Shebs (release 4.14);
Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9); Stu Grossman and John
Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4); John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and
3.9); Jim Kingdon (releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1, and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and
Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the gnu C++ support in GDB, with significant
additional contributions from Per Bothner and Daniel Berlin. James Clark wrote the gnu

C++ demangler. Early work on C++ was by Peter TerMaat (who also did much general
update work leading to release 3.0).

GDB uses the BFD subroutine library to examine multiple object-file formats; BFD
was a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John
Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support
for encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF2 support.
Adam de Boor and Bradley Davis contributed the ISI Optimum V support. Per Bothner,

Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete
contributed Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki
Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support. David Johnson con-
tributed Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support. Jeff
Law contributed HP PA and SOM support. Keith Packard contributed NS32K support.
Doug Rabson contributed Acorn Risc Machine support. Bob Rusk contributed Harris
Nighthawk CX-UX support. Chris Smith contributed Convex support (and Fortran de-
bugging). Jonathan Stone contributed Pyramid support. Michael Tiemann contributed

4 Debugging with GDB

SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould Powern-
ode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry
support.

Andreas Schwab contributed M68K gnu/Linux support.
Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.
Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several

machine instruction sets.
Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote

debugging. Intel Corporation, Wind River Systems, AMD, and ARM contributed remote
debugging modules for the i960, VxWorks, A29K UDI, and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2 sup-
port, and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the
command-completion support to cover C++ overloaded symbols.

Hitachi America, Ltd. sponsored the support for H8/300, H8/500, and Super-H proces-
sors.

NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
Mitsubishi sponsored the support for D10V, D30V, and M32R/D processors.
Toshiba sponsored the support for the TX39 Mips processor.
Matsushita sponsored the support for the MN10200 and MN10300 processors.
Fujitsu sponsored the support for SPARClite and FR30 processors.
Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.
Michael Snyder added support for tracepoints.
Stu Grossman wrote gdbserver.
Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly innumerable

bug fixes and cleanups throughout GDB.
The following people at the Hewlett-Packard Company contributed support for the PA-

RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0 (narrow mode), HP’s implementation
of kernel threads, HP’s aC++ compiler, and the terminal user interface: Ben Krepp, Richard
Title, John Bishop, Susan Macchia, Kathy Mann, Satish Pai, India Paul, Steve Rehrauer,
and Elena Zannoni. Kim Haase provided HP-specific information in this manual.

DJ Delorie ported GDB to MS-DOS, for the DJGPP project. Robert Hoehne made
significant contributions to the DJGPP port.

Cygnus Solutions has sponsored GDB maintenance and much of its development since
1991. Cygnus engineers who have worked on GDB fulltime include Mark Alexander, Jim
Blandy, Per Bothner, Kevin Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin
Hunt, Jim Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek Radouch, Keith Seitz,
Stan Shebs, David Taylor, and Elena Zannoni. In addition, Dave Brolley, Ian Carmichael,
Steve Chamberlain, Nick Clifton, JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank

Summary of GDB 5

Eigler, Doug Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff Holcomb,
Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner, Jason Merrill, Catherine
Moore, Drew Moseley, Ken Raeburn, Gavin Romig-Koch, Rob Savoye, Jamie Smith, Mike
Stump, Ian Taylor, Angela Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim
Wilson, and David Zuhn have made contributions both large and small.

Jim Blandy added support for preprocessor macros, while working for Red Hat.

6 Debugging with GDB

Chapter 1: A Sample GDB Session 7

1 A Sample GDB Session

You can use this manual at your leisure to read all about GDB. However, a handful
of commands are enough to get started using the debugger. This chapter illustrates those
commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick
out from the surrounding output.

One of the preliminary versions of gnu m4 (a generic macro processor) exhibits the
following bug: sometimes, when we change its quote strings from the default, the commands
used to capture one macro definition within another stop working. In the following short m4
session, we define a macro foo which expands to 0000; we then use the m4 built-in defn to
define bar as the same thing. However, when we change the open quote string to <QUOTE>
and the close quote string to <UNQUOTE>, the same procedure fails to define a new synonym
baz:

$ cd gnu/m4
$./m4
define(foo,0000)

foo
0000
define(bar,defn(‘foo’))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))
baz
C-d
m4: End of input: 0: fatal error: EOF in string

Let us use GDB to try to see what is going on.
$ gdb m4
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.

GDB 5.3, Copyright 1999 Free Software Foundation, Inc...
(gdb)

GDB reads only enough symbol data to know where to find the rest when needed; as a
result, the first prompt comes up very quickly. We now tell GDB to use a narrower display
width than usual, so that examples fit in this manual.

(gdb) set width 70

We need to see how the m4 built-in changequote works. Having looked at the source, we
know the relevant subroutine is m4_changequote, so we set a breakpoint there with the
GDB break command.

8 Debugging with GDB

(gdb) break m4 changequote
Breakpoint 1 at 0x62f4: file builtin.c, line 879.

Using the run command, we start m4 running under GDB control; as long as control does
not reach the m4_changequote subroutine, the program runs as usual:

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/m4
define(foo,0000)

foo
0000

To trigger the breakpoint, we call changequote. GDB suspends execution of m4, displaying
information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
at builtin.c:879

879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line of the current
function.

(gdb) n
882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
: nil,

set_quotes looks like a promising subroutine. We can go into it by using the command s
(step) instead of next. step goes to the next line to be executed in any subroutine, so it
steps into set_quotes.

(gdb) s
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
530 if (lquote != def_lquote)

The display that shows the subroutine where m4 is now suspended (and its arguments) is
called a stack frame display. It shows a summary of the stack. We can use the backtrace
command (which can also be spelled bt), to see where we are in the stack as a whole: the
backtrace command displays a stack frame for each active subroutine.

(gdb) bt
#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)

at builtin.c:882
#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)

at macro.c:71
#4 0x79dc in expand_input () at macro.c:40
#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The first two times, we can use ‘s’;
the next two times we use n to avoid falling into the xstrdup subroutine.

Chapter 1: A Sample GDB Session 9

(gdb) s
0x3b5c 532 if (rquote != def_rquote)
(gdb) s
0x3b80 535 lquote = (lq == nil || *lq == ’\0’) ? \
def_lquote : xstrdup(lq);
(gdb) n
536 rquote = (rq == nil || *rq == ’\0’) ? def_rquote\
: xstrdup(rq);
(gdb) n
538 len_lquote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables lquote and rquote
to see if they are in fact the new left and right quotes we specified. We use the command
p (print) to see their values.

(gdb) p lquote
$1 = 0x35d40 "<QUOTE>"
(gdb) p rquote
$2 = 0x35d50 "<UNQUOTE>"

lquote and rquote are indeed the new left and right quotes. To look at some context, we
can display ten lines of source surrounding the current line with the l (list) command.

(gdb) l
533 xfree(rquote);
534
535 lquote = (lq == nil || *lq == ’\0’) ? def_lquote\
: xstrdup (lq);
536 rquote = (rq == nil || *rq == ’\0’) ? def_rquote\
: xstrdup (rq);
537
538 len_lquote = strlen(rquote);
539 len_rquote = strlen(lquote);
540 }
541
542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine the
values of those variables.

(gdb) n
539 len_rquote = strlen(lquote);
(gdb) n
540 }
(gdb) p len lquote
$3 = 9
(gdb) p len rquote
$4 = 7

That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the
lengths of lquote and rquote respectively. We can set them to better values using the p
command, since it can print the value of any expression—and that expression can include
subroutine calls and assignments.

(gdb) p len lquote=strlen(lquote)

10 Debugging with GDB

$5 = 7
(gdb) p len rquote=strlen(rquote)
$6 = 9

Is that enough to fix the problem of using the new quotes with the m4 built-in defn? We can
allow m4 to continue executing with the c (continue) command, and then try the example
that caused trouble initially:

(gdb) c
Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz
0000

Success! The new quotes now work just as well as the default ones. The problem seems to
have been just the two typos defining the wrong lengths. We allow m4 exit by giving it an
EOF as input:

C-d
Program exited normally.

The message ‘Program exited normally.’ is from GDB; it indicates m4 has finished exe-
cuting. We can end our GDB session with the GDB quit command.

(gdb) quit

Chapter 2: Getting In and Out of GDB 11

2 Getting In and Out of GDB

This chapter discusses how to start GDB, and how to get out of it. The essentials are:
• type ‘gdb’ to start GDB.
• type quit or C-d to exit.

2.1 Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads commands from
the terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to specify more of your
debugging environment at the outset.

The command-line options described here are designed to cover a variety of situations;
in some environments, some of these options may effectively be unavailable.

The most usual way to start GDB is with one argument, specifying an executable pro-
gram:

gdb program

You can also start with both an executable program and a core file specified:
gdb program core

You can, instead, specify a process ID as a second argument, if you want to debug a
running process:

gdb program 1234

would attach GDB to process 1234 (unless you also have a file named ‘1234’; GDB does
check for a core file first).

Taking advantage of the second command-line argument requires a fairly complete op-
erating system; when you use GDB as a remote debugger attached to a bare board, there
may not be any notion of “process”, and there is often no way to get a core dump. GDB
will warn you if it is unable to attach or to read core dumps.

You can optionally have gdb pass any arguments after the executable file to the inferior
using --args. This option stops option processing.

gdb --args gcc -O2 -c foo.c

This will cause gdb to debug gcc, and to set gcc’s command-line arguments (see Sec-
tion 4.3 [Arguments], page 25) to ‘-O2 -c foo.c’.

You can run gdb without printing the front material, which describes GDB’s non-
warranty, by specifying -silent:

gdb -silent

You can further control how GDB starts up by using command-line options. GDB itself
can remind you of the options available.
Type

gdb -help

to display all available options and briefly describe their use (‘gdb -h’ is a shorter equiva-
lent).

All options and command line arguments you give are processed in sequential order. The
order makes a difference when the ‘-x’ option is used.

12 Debugging with GDB

2.1.1 Choosing files

When GDB starts, it reads any arguments other than options as specifying an executable
file and core file (or process ID). This is the same as if the arguments were specified by the
‘-se’ and ‘-c’ (or ‘-p’ options respectively. (GDB reads the first argument that does not
have an associated option flag as equivalent to the ‘-se’ option followed by that argument;
and the second argument that does not have an associated option flag, if any, as equivalent
to the ‘-c’/‘-p’ option followed by that argument.) If the second argument begins with a
decimal digit, GDB will first attempt to attach to it as a process, and if that fails, attempt
to open it as a corefile. If you have a corefile whose name begins with a digit, you can
prevent GDB from treating it as a pid by prefixing it with ‘./’, eg. ‘./12345’.

If GDB has not been configured to included core file support, such as for most embedded
targets, then it will complain about a second argument and ignore it.

Many options have both long and short forms; both are shown in the following list.
GDB also recognizes the long forms if you truncate them, so long as enough of the option is
present to be unambiguous. (If you prefer, you can flag option arguments with ‘--’ rather
than ‘-’, though we illustrate the more usual convention.)

-symbols file
-s file Read symbol table from file file.

-exec file
-e file Use file file as the executable file to execute when appropriate, and for examining

pure data in conjunction with a core dump.

-se file Read symbol table from file file and use it as the executable file.

-core file
-c file Use file file as a core dump to examine.

-c number
-pid number
-p number

Connect to process ID number, as with the attach command. If there is no
such process, GDB will attempt to open a core file named number.

-command file
-x file Execute GDB commands from file file. See Section 20.3 [Command files],

page 173.

-directory directory
-d directory

Add directory to the path to search for source files.

-m
-mapped Warning: this option depends on operating system facilities that are not sup-

ported on all systems.
If memory-mapped files are available on your system through the mmap system
call, you can use this option to have GDB write the symbols from your program
into a reusable file in the current directory. If the program you are debugging
is called ‘/tmp/fred’, the mapped symbol file is ‘/tmp/fred.syms’. Future

Chapter 2: Getting In and Out of GDB 13

GDB debugging sessions notice the presence of this file, and can quickly map
in symbol information from it, rather than reading the symbol table from the
executable program.
The ‘.syms’ file is specific to the host machine where GDB is run. It holds
an exact image of the internal GDB symbol table. It cannot be shared across
multiple host platforms.

-r
-readnow Read each symbol file’s entire symbol table immediately, rather than the default,

which is to read it incrementally as it is needed. This makes startup slower,
but makes future operations faster.

You typically combine the -mapped and -readnow options in order to build a ‘.syms’
file that contains complete symbol information. (See Section 15.1 [Commands to specify
files], page 127, for information on ‘.syms’ files.) A simple GDB invocation to do nothing
but build a ‘.syms’ file for future use is:

gdb -batch -nx -mapped -readnow programname

2.1.2 Choosing modes

You can run GDB in various alternative modes—for example, in batch mode or quiet
mode.

-nx
-n Do not execute commands found in any initialization files. Normally, GDB exe-

cutes the commands in these files after all the command options and arguments
have been processed. See Section 20.3 [Command files], page 173.

-quiet
-silent
-q “Quiet”. Do not print the introductory and copyright messages. These mes-

sages are also suppressed in batch mode.

-batch Run in batch mode. Exit with status 0 after processing all the command files
specified with ‘-x’ (and all commands from initialization files, if not inhibited
with ‘-n’). Exit with nonzero status if an error occurs in executing the GDB
commands in the command files.
Batch mode may be useful for running GDB as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
message

Program exited normally.

(which is ordinarily issued whenever a program running under GDB control
terminates) is not issued when running in batch mode.

-nowindows
-nw “No windows”. If GDB comes with a graphical user interface (GUI) built in,

then this option tells GDB to only use the command-line interface. If no GUI
is available, this option has no effect.

-windows
-w If GDB includes a GUI, then this option requires it to be used if possible.

14 Debugging with GDB

-cd directory
Run GDB using directory as its working directory, instead of the current direc-
tory.

-fullname
-f gnu Emacs sets this option when it runs GDB as a subprocess. It tells GDB to

output the full file name and line number in a standard, recognizable fashion
each time a stack frame is displayed (which includes each time your program
stops). This recognizable format looks like two ‘\032’ characters, followed by
the file name, line number and character position separated by colons, and a
newline. The Emacs-to-GDB interface program uses the two ‘\032’ characters
as a signal to display the source code for the frame.

-epoch The Epoch Emacs-GDB interface sets this option when it runs GDB as a sub-
process. It tells GDB to modify its print routines so as to allow Epoch to
display values of expressions in a separate window.

-annotate level
This option sets the annotation level inside GDB. Its effect is identical to using
‘set annotate level’ (see Chapter 23 [Annotations], page 185). Annotation
level controls how much information does GDB print together with its prompt,
values of expressions, source lines, and other types of output. Level 0 is the
normal, level 1 is for use when GDB is run as a subprocess of gnu Emacs, level
2 is the maximum annotation suitable for programs that control GDB.

-async Use the asynchronous event loop for the command-line interface. GDB pro-
cesses all events, such as user keyboard input, via a special event loop. This
allows GDB to accept and process user commands in parallel with the debugged
process being run1, so you don’t need to wait for control to return to GDB be-
fore you type the next command. (Note: as of version 5.1, the target side of
the asynchronous operation is not yet in place, so ‘-async’ does not work fully
yet.)
When the standard input is connected to a terminal device, GDB uses the
asynchronous event loop by default, unless disabled by the ‘-noasync’ option.

-noasync Disable the asynchronous event loop for the command-line interface.

--args Change interpretation of command line so that arguments following the exe-
cutable file are passed as command line arguments to the inferior. This option
stops option processing.

-baud bps
-b bps Set the line speed (baud rate or bits per second) of any serial interface used by

GDB for remote debugging.

-tty device
-t device Run using device for your program’s standard input and output.

-tui Activate the Terminal User Interface when starting. The Terminal User Inter-
face manages several text windows on the terminal, showing source, assembly,

1 GDB built with djgpp tools for MS-DOS/MS-Windows supports this mode of operation, but the event
loop is suspended when the debuggee runs.

Chapter 2: Getting In and Out of GDB 15

registers and GDB command outputs (see Chapter 21 [GDB Text User Inter-
face], page 177). Do not use this option if you run GDB from Emacs (see
Chapter 22 [Using GDB under gnu Emacs], page 183).

-interpreter interp
Use the interpreter interp for interface with the controlling program or device.
This option is meant to be set by programs which communicate with GDB
using it as a back end.
‘--interpreter=mi’ (or ‘--interpreter=mi1’) causes GDB to use the
gdb/mi interface (see Chapter 24 [The gdb/mi Interface], page 193). The
older gdb/mi interface, included in GDB version 5.0 can be selected with
‘--interpreter=mi0’.

-write Open the executable and core files for both reading and writing. This is equiv-
alent to the ‘set write on’ command inside GDB (see Section 14.6 [Patching],
page 126).

-statistics
This option causes GDB to print statistics about time and memory usage after
it completes each command and returns to the prompt.

-version This option causes GDB to print its version number and no-warranty blurb,
and exit.

2.2 Quitting GDB

quit [expression]
q To exit GDB, use the quit command (abbreviated q), or type an end-of-file

character (usually C-d). If you do not supply expression, GDB will terminate
normally; otherwise it will terminate using the result of expression as the error
code.

An interrupt (often C-c) does not exit from GDB, but rather terminates the action of
any GDB command that is in progress and returns to GDB command level. It is safe to
type the interrupt character at any time because GDB does not allow it to take effect until
a time when it is safe.

If you have been using GDB to control an attached process or device, you can release
it with the detach command (see Section 4.7 [Debugging an already-running process],
page 27).

2.3 Shell commands

If you need to execute occasional shell commands during your debugging session, there
is no need to leave or suspend GDB; you can just use the shell command.

shell command string
Invoke a standard shell to execute command string. If it exists, the environment
variable SHELL determines which shell to run. Otherwise GDB uses the default
shell (‘/bin/sh’ on Unix systems, ‘COMMAND.COM’ on MS-DOS, etc.).

16 Debugging with GDB

The utility make is often needed in development environments. You do not have to use
the shell command for this purpose in GDB:

make make-args
Execute the make program with the specified arguments. This is equivalent to
‘shell make make-args’.

Chapter 3: GDB Commands 17

3 GDB Commands

You can abbreviate a GDB command to the first few letters of the command name, if
that abbreviation is unambiguous; and you can repeat certain GDB commands by typing
just 〈RET〉. You can also use the 〈TAB〉 key to get GDB to fill out the rest of a word in a
command (or to show you the alternatives available, if there is more than one possibility).

3.1 Command syntax

A GDB command is a single line of input. There is no limit on how long it can be.
It starts with a command name, which is followed by arguments whose meaning depends
on the command name. For example, the command step accepts an argument which is
the number of times to step, as in ‘step 5’. You can also use the step command with no
arguments. Some commands do not allow any arguments.

GDB command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual com-
mands. In some cases, even ambiguous abbreviations are allowed; for example, s is specially
defined as equivalent to step even though there are other commands whose names start
with s. You can test abbreviations by using them as arguments to the help command.

A blank line as input to GDB (typing just 〈RET〉) means to repeat the previous command.
Certain commands (for example, run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are unlikely to want to repeat.

The list and x commands, when you repeat them with 〈RET〉, construct new arguments
rather than repeating exactly as typed. This permits easy scanning of source or memory.

GDB can also use 〈RET〉 in another way: to partition lengthy output, in a way similar to
the common utility more (see Section 19.4 [Screen size], page 167). Since it is easy to press
one 〈RET〉 too many in this situation, GDB disables command repetition after any command
that generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see Section 20.3 [Command files], page 173).

The C-o binding is useful for repeating a complex sequence of commands. This command
accepts the current line, like RET, and then fetches the next line relative to the current line
from the history for editing.

3.2 Command completion

GDB can fill in the rest of a word in a command for you, if there is only one possibility;
it can also show you what the valid possibilities are for the next word in a command, at
any time. This works for GDB commands, GDB subcommands, and the names of symbols
in your program.

Press the 〈TAB〉 key whenever you want GDB to fill out the rest of a word. If there is
only one possibility, GDB fills in the word, and waits for you to finish the command (or
press 〈RET〉 to enter it). For example, if you type

(gdb) info bre 〈TAB〉

GDB fills in the rest of the word ‘breakpoints’, since that is the only info subcommand
beginning with ‘bre’:

18 Debugging with GDB

(gdb) info breakpoints

You can either press 〈RET〉 at this point, to run the info breakpoints command, or
backspace and enter something else, if ‘breakpoints’ does not look like the command you
expected. (If you were sure you wanted info breakpoints in the first place, you might as
well just type 〈RET〉 immediately after ‘info bre’, to exploit command abbreviations rather
than command completion).

If there is more than one possibility for the next word when you press 〈TAB〉, GDB sounds
a bell. You can either supply more characters and try again, or just press 〈TAB〉 a second
time; GDB displays all the possible completions for that word. For example, you might
want to set a breakpoint on a subroutine whose name begins with ‘make_’, but when you
type b make_〈TAB〉 GDB just sounds the bell. Typing 〈TAB〉 again displays all the function
names in your program that begin with those characters, for example:

(gdb) b make_ 〈TAB〉
GDB sounds bell; press 〈TAB〉 again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list
(gdb) b make_

After displaying the available possibilities, GDB copies your partial input (‘b make_’ in the
example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can press M-? rather
than pressing 〈TAB〉 twice. M-? means 〈META〉 ?. You can type this either by holding down
a key designated as the 〈META〉 shift on your keyboard (if there is one) while typing ?, or as
〈ESC〉 followed by ?.

Sometimes the string you need, while logically a “word”, may contain parentheses or
other characters that GDB normally excludes from its notion of a word. To permit word
completion to work in this situation, you may enclose words in ’ (single quote marks) in
GDB commands.

The most likely situation where you might need this is in typing the name of a C++
function. This is because C++ allows function overloading (multiple definitions of the same
function, distinguished by argument type). For example, when you want to set a breakpoint
you may need to distinguish whether you mean the version of name that takes an int
parameter, name(int), or the version that takes a float parameter, name(float). To use
the word-completion facilities in this situation, type a single quote ’ at the beginning of
the function name. This alerts GDB that it may need to consider more information than
usual when you press 〈TAB〉 or M-? to request word completion:

(gdb) b ’bubble(M-?
bubble(double,double) bubble(int,int)
(gdb) b ’bubble(

In some cases, GDB can tell that completing a name requires using quotes. When this
happens, GDB inserts the quote for you (while completing as much as it can) if you do not
type the quote in the first place:

(gdb) b bub 〈TAB〉

Chapter 3: GDB Commands 19

GDB alters your input line to the following, and rings a bell:
(gdb) b ’bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you have not yet started
typing the argument list when you ask for completion on an overloaded symbol.

For more information about overloaded functions, see Section 12.4.1.3 [C++ expressions],
page 110. You can use the command set overload-resolution off to disable overload
resolution; see Section 12.4.1.7 [GDB features for C++], page 112.

3.3 Getting help

You can always ask GDB itself for information on its commands, using the command
help.

help
h You can use help (abbreviated h) with no arguments to display a short list of

named classes of commands:
(gdb) help
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without

stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help class Using one of the general help classes as an argument, you can get a list of the
individual commands in that class. For example, here is the help display for
the class status:

(gdb) help status
Status inquiries.

List of commands:

20 Debugging with GDB

info -- Generic command for showing things
about the program being debugged
show -- Generic command for showing things
about the debugger

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help command
With a command name as help argument, GDB displays a short paragraph on
how to use that command.

apropos args
The apropos args command searches through all of the GDB commands, and
their documentation, for the regular expression specified in args. It prints out
all matches found. For example:

apropos reload

results in:
set symbol-reloading -- Set dynamic symbol table reloading

multiple times in one run
show symbol-reloading -- Show dynamic symbol table reloading

multiple times in one run

complete args
The complete args command lists all the possible completions for the beginning
of a command. Use args to specify the beginning of the command you want
completed. For example:

complete i

results in:
if
ignore
info
inspect

This is intended for use by gnu Emacs.

In addition to help, you can use the GDB commands info and show to inquire about the
state of your program, or the state of GDB itself. Each command supports many topics of
inquiry; this manual introduces each of them in the appropriate context. The listings under
info and under show in the Index point to all the sub-commands. See [Index], page 309.

info This command (abbreviated i) is for describing the state of your program. For
example, you can list the arguments given to your program with info args,
list the registers currently in use with info registers, or list the breakpoints
you have set with info breakpoints. You can get a complete list of the info
sub-commands with help info.

Chapter 3: GDB Commands 21

set You can assign the result of an expression to an environment variable with set.
For example, you can set the GDB prompt to a $-sign with set prompt $.

show In contrast to info, show is for describing the state of GDB itself. You can
change most of the things you can show, by using the related command set;
for example, you can control what number system is used for displays with set
radix, or simply inquire which is currently in use with show radix.
To display all the settable parameters and their current values, you can use
show with no arguments; you may also use info set. Both commands produce
the same display.

Here are three miscellaneous show subcommands, all of which are exceptional in lacking
corresponding set commands:

show version
Show what version of GDB is running. You should include this information in
GDB bug-reports. If multiple versions of GDB are in use at your site, you may
need to determine which version of GDB you are running; as GDB evolves, new
commands are introduced, and old ones may wither away. Also, many system
vendors ship variant versions of GDB, and there are variant versions of GDB
in gnu/Linux distributions as well. The version number is the same as the one
announced when you start GDB.

show copying
Display information about permission for copying GDB.

show warranty
Display the gnu “NO WARRANTY” statement, or a warranty, if your version
of GDB comes with one.

22 Debugging with GDB

Chapter 4: Running Programs Under GDB 23

4 Running Programs Under GDB

When you run a program under GDB, you must first generate debugging information
when you compile it.

You may start GDB with its arguments, if any, in an environment of your choice. If you
are doing native debugging, you may redirect your program’s input and output, debug an
already running process, or kill a child process.

4.1 Compiling for debugging

In order to debug a program effectively, you need to generate debugging information
when you compile it. This debugging information is stored in the object file; it describes
the data type of each variable or function and the correspondence between source line
numbers and addresses in the executable code.

To request debugging information, specify the ‘-g’ option when you run the compiler.

Most compilers do not include information about preprocessor macros in the debugging
information if you specify the ‘-g’ flag alone, because this information is rather large.
Version 3.1 of GCC, the gnu C compiler, provides macro information if you specify the
options ‘-gdwarf-2’ and ‘-g3’; the former option requests debugging information in the
Dwarf 2 format, and the latter requests “extra information”. In the future, we hope to find
more compact ways to represent macro information, so that it can be included with ‘-g’
alone.

Many C compilers are unable to handle the ‘-g’ and ‘-O’ options together. Using those
compilers, you cannot generate optimized executables containing debugging information.

GCC, the gnu C compiler, supports ‘-g’ with or without ‘-O’, making it possible to
debug optimized code. We recommend that you always use ‘-g’ whenever you compile a
program. You may think your program is correct, but there is no sense in pushing your
luck.

When you debug a program compiled with ‘-g -O’, remember that the optimizer is
rearranging your code; the debugger shows you what is really there. Do not be too surprised
when the execution path does not exactly match your source file! An extreme example: if
you define a variable, but never use it, GDB never sees that variable—because the compiler
optimizes it out of existence.

Some things do not work as well with ‘-g -O’ as with just ‘-g’, particularly on machines
with instruction scheduling. If in doubt, recompile with ‘-g’ alone, and if this fixes the
problem, please report it to us as a bug (including a test case!).

Older versions of the gnu C compiler permitted a variant option ‘-gg’ for debugging
information. GDB no longer supports this format; if your gnu C compiler has this option,
do not use it.

24 Debugging with GDB

4.2 Starting your program

run
r Use the run command to start your program under GDB. You must first spec-

ify the program name (except on VxWorks) with an argument to GDB (see
Chapter 2 [Getting In and Out of GDB], page 11), or by using the file or
exec-file command (see Section 15.1 [Commands to specify files], page 127).

If you are running your program in an execution environment that supports processes,
run creates an inferior process and makes that process run your program. (In environments
without processes, run jumps to the start of your program.)

The execution of a program is affected by certain information it receives from its superior.
GDB provides ways to specify this information, which you must do before starting your
program. (You can change it after starting your program, but such changes only affect your
program the next time you start it.) This information may be divided into four categories:

The arguments.
Specify the arguments to give your program as the arguments of the run com-
mand. If a shell is available on your target, the shell is used to pass the argu-
ments, so that you may use normal conventions (such as wildcard expansion or
variable substitution) in describing the arguments. In Unix systems, you can
control which shell is used with the SHELL environment variable. See Section 4.3
[Your program’s arguments], page 25.

The environment.
Your program normally inherits its environment from GDB, but you can use the
GDB commands set environment and unset environment to change parts of
the environment that affect your program. See Section 4.4 [Your program’s
environment], page 25.

The working directory.
Your program inherits its working directory from GDB. You can set the GDB
working directory with the cd command in GDB. See Section 4.5 [Your pro-
gram’s working directory], page 26.

The standard input and output.
Your program normally uses the same device for standard input and standard
output as GDB is using. You can redirect input and output in the run command
line, or you can use the tty command to set a different device for your program.
See Section 4.6 [Your program’s input and output], page 26.
Warning: While input and output redirection work, you cannot use pipes to
pass the output of the program you are debugging to another program; if you
attempt this, GDB is likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute immediately. See
Chapter 5 [Stopping and continuing], page 33, for discussion of how to arrange for your
program to stop. Once your program has stopped, you may call functions in your program,
using the print or call commands. See Chapter 8 [Examining Data], page 63.

Chapter 4: Running Programs Under GDB 25

If the modification time of your symbol file has changed since the last time GDB read
its symbols, GDB discards its symbol table, and reads it again. When it does this, GDB
tries to retain your current breakpoints.

4.3 Your program’s arguments

The arguments to your program can be specified by the arguments of the run command.
They are passed to a shell, which expands wildcard characters and performs redirection of
I/O, and thence to your program. Your SHELL environment variable (if it exists) specifies
what shell GDB uses. If you do not define SHELL, GDB uses the default shell (‘/bin/sh’
on Unix).

On non-Unix systems, the program is usually invoked directly by GDB, which emulates
I/O redirection via the appropriate system calls, and the wildcard characters are expanded
by the startup code of the program, not by the shell.

run with no arguments uses the same arguments used by the previous run, or those set
by the set args command.

set args Specify the arguments to be used the next time your program is run. If set
args has no arguments, run executes your program with no arguments. Once
you have run your program with arguments, using set args before the next
run is the only way to run it again without arguments.

show args Show the arguments to give your program when it is started.

4.4 Your program’s environment

The environment consists of a set of environment variables and their values. Environment
variables conventionally record such things as your user name, your home directory, your
terminal type, and your search path for programs to run. Usually you set up environment
variables with the shell and they are inherited by all the other programs you run. When
debugging, it can be useful to try running your program with a modified environment
without having to start GDB over again.

path directory
Add directory to the front of the PATH environment variable (the search path
for executables) that will be passed to your program. The value of PATH used
by GDB does not change. You may specify several directory names, separated
by whitespace or by a system-dependent separator character (‘:’ on Unix, ‘;’
on MS-DOS and MS-Windows). If directory is already in the path, it is moved
to the front, so it is searched sooner.
You can use the string ‘$cwd’ to refer to whatever is the current working di-
rectory at the time GDB searches the path. If you use ‘.’ instead, it refers
to the directory where you executed the path command. GDB replaces ‘.’ in
the directory argument (with the current path) before adding directory to the
search path.

show paths
Display the list of search paths for executables (the PATH environment variable).

26 Debugging with GDB

show environment [varname]
Print the value of environment variable varname to be given to your program
when it starts. If you do not supply varname, print the names and values of
all environment variables to be given to your program. You can abbreviate
environment as env.

set environment varname [=value]
Set environment variable varname to value. The value changes for your program
only, not for GDB itself. value may be any string; the values of environment
variables are just strings, and any interpretation is supplied by your program
itself. The value parameter is optional; if it is eliminated, the variable is set to
a null value.
For example, this command:

set env USER = foo

tells the debugged program, when subsequently run, that its user is named
‘foo’. (The spaces around ‘=’ are used for clarity here; they are not actually
required.)

unset environment varname
Remove variable varname from the environment to be passed to your program.
This is different from ‘set env varname =’; unset environment removes the
variable from the environment, rather than assigning it an empty value.

Warning: On Unix systems, GDB runs your program using the shell indicated by your
SHELL environment variable if it exists (or /bin/sh if not). If your SHELL variable names a
shell that runs an initialization file—such as ‘.cshrc’ for C-shell, or ‘.bashrc’ for BASH—
any variables you set in that file affect your program. You may wish to move setting of
environment variables to files that are only run when you sign on, such as ‘.login’ or
‘.profile’.

4.5 Your program’s working directory

Each time you start your program with run, it inherits its working directory from the
current working directory of GDB. The GDB working directory is initially whatever it
inherited from its parent process (typically the shell), but you can specify a new working
directory in GDB with the cd command.

The GDB working directory also serves as a default for the commands that specify files
for GDB to operate on. See Section 15.1 [Commands to specify files], page 127.

cd directory
Set the GDB working directory to directory.

pwd Print the GDB working directory.

4.6 Your program’s input and output

By default, the program you run under GDB does input and output to the same terminal
that GDB uses. GDB switches the terminal to its own terminal modes to interact with you,

Chapter 4: Running Programs Under GDB 27

but it records the terminal modes your program was using and switches back to them when
you continue running your program.

info terminal
Displays information recorded by GDB about the terminal modes your program
is using.

You can redirect your program’s input and/or output using shell redirection with the
run command. For example,

run > outfile

starts your program, diverting its output to the file ‘outfile’.
Another way to specify where your program should do input and output is with the

tty command. This command accepts a file name as argument, and causes this file to be
the default for future run commands. It also resets the controlling terminal for the child
process, for future run commands. For example,

tty /dev/ttyb

directs that processes started with subsequent run commands default to do input and output
on the terminal ‘/dev/ttyb’ and have that as their controlling terminal.

An explicit redirection in run overrides the tty command’s effect on the input/output
device, but not its effect on the controlling terminal.

When you use the tty command or redirect input in the run command, only the input
for your program is affected. The input for GDB still comes from your terminal.

4.7 Debugging an already-running process

attach process-id
This command attaches to a running process—one that was started outside
GDB. (info files shows your active targets.) The command takes as argument
a process ID. The usual way to find out the process-id of a Unix process is with
the ps utility, or with the ‘jobs -l’ shell command.
attach does not repeat if you press 〈RET〉 a second time after executing the
command.

To use attach, your program must be running in an environment which supports pro-
cesses; for example, attach does not work for programs on bare-board targets that lack an
operating system. You must also have permission to send the process a signal.

When you use attach, the debugger finds the program running in the process first by
looking in the current working directory, then (if the program is not found) by using the
source file search path (see Section 7.3 [Specifying source directories], page 59). You can
also use the file command to load the program. See Section 15.1 [Commands to Specify
Files], page 127.

The first thing GDB does after arranging to debug the specified process is to stop it.
You can examine and modify an attached process with all the GDB commands that are
ordinarily available when you start processes with run. You can insert breakpoints; you
can step and continue; you can modify storage. If you would rather the process continue
running, you may use the continue command after attaching GDB to the process.

28 Debugging with GDB

detach When you have finished debugging the attached process, you can use the detach
command to release it from GDB control. Detaching the process continues its
execution. After the detach command, that process and GDB become com-
pletely independent once more, and you are ready to attach another process
or start one with run. detach does not repeat if you press 〈RET〉 again after
executing the command.

If you exit GDB or use the run command while you have an attached process, you kill
that process. By default, GDB asks for confirmation if you try to do either of these things;
you can control whether or not you need to confirm by using the set confirm command
(see Section 19.6 [Optional warnings and messages], page 168).

4.8 Killing the child process

kill Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a running process.
GDB ignores any core dump file while your program is running.

On some operating systems, a program cannot be executed outside GDB while you have
breakpoints set on it inside GDB. You can use the kill command in this situation to permit
running your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program,
since on many systems it is impossible to modify an executable file while it is running in a
process. In this case, when you next type run, GDB notices that the file has changed, and
reads the symbol table again (while trying to preserve your current breakpoint settings).

4.9 Debugging programs with multiple threads

In some operating systems, such as HP-UX and Solaris, a single program may have more
than one thread of execution. The precise semantics of threads differ from one operating
system to another, but in general the threads of a single program are akin to multiple
processes—except that they share one address space (that is, they can all examine and
modify the same variables). On the other hand, each thread has its own registers and
execution stack, and perhaps private memory.

GDB provides these facilities for debugging multi-thread programs:
• automatic notification of new threads
• ‘thread threadno’, a command to switch among threads
• ‘info threads’, a command to inquire about existing threads
• ‘thread apply [threadno] [all] args’, a command to apply a command to a list of

threads
• thread-specific breakpoints

Warning: These facilities are not yet available on every GDB configuration
where the operating system supports threads. If your GDB does not support
threads, these commands have no effect. For example, a system without thread
support shows no output from ‘info threads’, and always rejects the thread
command, like this:

Chapter 4: Running Programs Under GDB 29

(gdb) info threads
(gdb) thread 1
Thread ID 1 not known. Use the "info threads" command to
see the IDs of currently known threads.

The GDB thread debugging facility allows you to observe all threads while your program
runs—but whenever GDB takes control, one thread in particular is always the focus of
debugging. This thread is called the current thread. Debugging commands show program
information from the perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays the target system’s
identification for the thread with a message in the form ‘[New systag]’. systag is a thread
identifier whose form varies depending on the particular system. For example, on LynxOS,
you might see

[New process 35 thread 27]

when GDB notices a new thread. In contrast, on an SGI system, the systag is simply
something like ‘process 368’, with no further qualifier.

For debugging purposes, GDB associates its own thread number—always a single
integer—with each thread in your program.

info threads
Display a summary of all threads currently in your program. GDB displays for
each thread (in this order):
1. the thread number assigned by GDB
2. the target system’s thread identifier (systag)
3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates the current
thread.
For example,

(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()

* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

On HP-UX systems:
For debugging purposes, GDB associates its own thread number—a small integer as-

signed in thread-creation order—with each thread in your program.
Whenever GDB detects a new thread in your program, it displays both GDB’s thread

number and the target system’s identification for the thread with a message in the form
‘[New systag]’. systag is a thread identifier whose form varies depending on the particular
system. For example, on HP-UX, you see

[New thread 2 (system thread 26594)]

when GDB notices a new thread.

info threads
Display a summary of all threads currently in your program. GDB displays for
each thread (in this order):

30 Debugging with GDB

1. the thread number assigned by GDB
2. the target system’s thread identifier (systag)
3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates the current
thread.
For example,

(gdb) info threads
* 3 system thread 26607 worker (wptr=0x7b09c318 "@") \

at quicksort.c:137
2 system thread 26606 0x7b0030d8 in __ksleep () \

from /usr/lib/libc.2
1 system thread 27905 0x7b003498 in _brk () \

from /usr/lib/libc.2

thread threadno
Make thread number threadno the current thread. The command argument
threadno is the internal GDB thread number, as shown in the first field of the
‘info threads’ display. GDB responds by displaying the system identifier of
the thread you selected, and its current stack frame summary:

(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()

As with the ‘[New ...]’ message, the form of the text after ‘Switching to’
depends on your system’s conventions for identifying threads.

thread apply [threadno] [all] args
The thread apply command allows you to apply a command to one or more
threads. Specify the numbers of the threads that you want affected with the
command argument threadno. threadno is the internal GDB thread number,
as shown in the first field of the ‘info threads’ display. To apply a command
to all threads, use thread apply all args.

Whenever GDB stops your program, due to a breakpoint or a signal, it automatically
selects the thread where that breakpoint or signal happened. GDB alerts you to the context
switch with a message of the form ‘[Switching to systag]’ to identify the thread.

See Section 5.4 [Stopping and starting multi-thread programs], page 50, for more infor-
mation about how GDB behaves when you stop and start programs with multiple threads.

See Section 5.1.2 [Setting watchpoints], page 37, for information about watchpoints in
programs with multiple threads.

4.10 Debugging programs with multiple processes

On most systems, GDB has no special support for debugging programs which create
additional processes using the fork function. When a program forks, GDB will continue

Chapter 4: Running Programs Under GDB 31

to debug the parent process and the child process will run unimpeded. If you have set a
breakpoint in any code which the child then executes, the child will get a SIGTRAP signal
which (unless it catches the signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround which isn’t too
painful. Put a call to sleep in the code which the child process executes after the fork. It
may be useful to sleep only if a certain environment variable is set, or a certain file exists,
so that the delay need not occur when you don’t want to run GDB on the child. While the
child is sleeping, use the ps program to get its process ID. Then tell GDB (a new invocation
of GDB if you are also debugging the parent process) to attach to the child process (see
Section 4.7 [Attach], page 27). From that point on you can debug the child process just like
any other process which you attached to.

On HP-UX (11.x and later only?), GDB provides support for debugging programs that
create additional processes using the fork or vfork function.

By default, when a program forks, GDB will continue to debug the parent process and
the child process will run unimpeded.

If you want to follow the child process instead of the parent process, use the command
set follow-fork-mode.

set follow-fork-mode mode
Set the debugger response to a program call of fork or vfork. A call to fork
or vfork creates a new process. The mode can be:

parent The original process is debugged after a fork. The child process
runs unimpeded. This is the default.

child The new process is debugged after a fork. The parent process runs
unimpeded.

ask The debugger will ask for one of the above choices.

show follow-fork-mode
Display the current debugger response to a fork or vfork call.

If you ask to debug a child process and a vfork is followed by an exec, GDB executes
the new target up to the first breakpoint in the new target. If you have a breakpoint set on
main in your original program, the breakpoint will also be set on the child process’s main.

When a child process is spawned by vfork, you cannot debug the child or parent until
an exec call completes.

If you issue a run command to GDB after an exec call executes, the new target restarts.
To restart the parent process, use the file command with the parent executable name as
its argument.

You can use the catch command to make GDB stop whenever a fork, vfork, or exec
call is made. See Section 5.1.3 [Setting catchpoints], page 39.

32 Debugging with GDB

Chapter 5: Stopping and Continuing 33

5 Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your program before
it terminates; or so that, if your program runs into trouble, you can investigate and find
out why.

Inside GDB, your program may stop for any of several reasons, such as a signal, a
breakpoint, or reaching a new line after a GDB command such as step. You may then
examine and change variables, set new breakpoints or remove old ones, and then continue
execution. Usually, the messages shown by GDB provide ample explanation of the status
of your program—but you can also explicitly request this information at any time.

info program
Display information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

5.1 Breakpoints, watchpoints, and catchpoints

A breakpoint makes your program stop whenever a certain point in the program is
reached. For each breakpoint, you can add conditions to control in finer detail whether
your program stops. You can set breakpoints with the break command and its variants
(see Section 5.1.1 [Setting breakpoints], page 34), to specify the place where your program
should stop by line number, function name or exact address in the program.

In HP-UX, SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can set breakpoints
in shared libraries before the executable is run. There is a minor limitation on HP-UX
systems: you must wait until the executable is run in order to set breakpoints in shared
library routines that are not called directly by the program (for example, routines that are
arguments in a pthread_create call).

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. You must use a different command to set watchpoints (see Section 5.1.2
[Setting watchpoints], page 37), but aside from that, you can manage a watchpoint like any
other breakpoint: you enable, disable, and delete both breakpoints and watchpoints using
the same commands.

You can arrange to have values from your program displayed automatically whenever
GDB stops at a breakpoint. See Section 8.6 [Automatic display], page 68.

A catchpoint is another special breakpoint that stops your program when a certain kind
of event occurs, such as the throwing of a C++ exception or the loading of a library. As with
watchpoints, you use a different command to set a catchpoint (see Section 5.1.3 [Setting
catchpoints], page 39), but aside from that, you can manage a catchpoint like any other
breakpoint. (To stop when your program receives a signal, use the handle command; see
Section 5.3 [Signals], page 48.)

GDB assigns a number to each breakpoint, watchpoint, or catchpoint when you create
it; these numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints you use the breakpoint number to say which
breakpoint you want to change. Each breakpoint may be enabled or disabled; if disabled,
it has no effect on your program until you enable it again.

34 Debugging with GDB

Some GDB commands accept a range of breakpoints on which to operate. A breakpoint
range is either a single breakpoint number, like ‘5’, or two such numbers, in increasing
order, separated by a hyphen, like ‘5-7’. When a breakpoint range is given to a command,
all breakpoint in that range are operated on.

5.1.1 Setting breakpoints

Breakpoints are set with the break command (abbreviated b). The debugger conve-
nience variable ‘$bpnum’ records the number of the breakpoint you’ve set most recently;
see Section 8.9 [Convenience variables], page 76, for a discussion of what you can do with
convenience variables.

You have several ways to say where the breakpoint should go.

break function
Set a breakpoint at entry to function function. When using source languages
that permit overloading of symbols, such as C++, function may refer to more
than one possible place to break. See Section 5.1.8 [Breakpoint menus], page 44,
for a discussion of that situation.

break +offset
break -offset

Set a breakpoint some number of lines forward or back from the position at
which execution stopped in the currently selected stack frame. (See Section 6.1
[Frames], page 53, for a description of stack frames.)

break linenum
Set a breakpoint at line linenum in the current source file. The current source
file is the last file whose source text was printed. The breakpoint will stop your
program just before it executes any of the code on that line.

break filename:linenum
Set a breakpoint at line linenum in source file filename.

break filename:function
Set a breakpoint at entry to function function found in file filename. Specifying
a file name as well as a function name is superfluous except when multiple files
contain similarly named functions.

break *address
Set a breakpoint at address address. You can use this to set breakpoints in
parts of your program which do not have debugging information or source files.

break When called without any arguments, break sets a breakpoint at the next in-
struction to be executed in the selected stack frame (see Chapter 6 [Examining
the Stack], page 53). In any selected frame but the innermost, this makes your
program stop as soon as control returns to that frame. This is similar to the
effect of a finish command in the frame inside the selected frame—except that
finish does not leave an active breakpoint. If you use break without an argu-
ment in the innermost frame, GDB stops the next time it reaches the current
location; this may be useful inside loops.

Chapter 5: Stopping and Continuing 35

GDB normally ignores breakpoints when it resumes execution, until at least one
instruction has been executed. If it did not do this, you would be unable to pro-
ceed past a breakpoint without first disabling the breakpoint. This rule applies
whether or not the breakpoint already existed when your program stopped.

break ... if cond
Set a breakpoint with condition cond; evaluate the expression cond each time
the breakpoint is reached, and stop only if the value is nonzero—that is, if cond
evaluates as true. ‘...’ stands for one of the possible arguments described
above (or no argument) specifying where to break. See Section 5.1.6 [Break
conditions], page 42, for more information on breakpoint conditions.

tbreak args
Set a breakpoint enabled only for one stop. args are the same as for the break
command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted after the first time your program stops there. See Sec-
tion 5.1.5 [Disabling breakpoints], page 41.

hbreak args
Set a hardware-assisted breakpoint. args are the same as for the break com-
mand and the breakpoint is set in the same way, but the breakpoint requires
hardware support and some target hardware may not have this support. The
main purpose of this is EPROM/ROM code debugging, so you can set a break-
point at an instruction without changing the instruction. This can be used
with the new trap-generation provided by SPARClite DSU and some x86-based
targets. These targets will generate traps when a program accesses some data
or instruction address that is assigned to the debug registers. However the
hardware breakpoint registers can take a limited number of breakpoints. For
example, on the DSU, only two data breakpoints can be set at a time, and GDB
will reject this command if more than two are used. Delete or disable unused
hardware breakpoints before setting new ones (see Section 5.1.5 [Disabling],
page 41). See Section 5.1.6 [Break conditions], page 42.

thbreak args
Set a hardware-assisted breakpoint enabled only for one stop. args are the
same as for the hbreak command and the breakpoint is set in the same way.
However, like the tbreak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the hbreak command,
the breakpoint requires hardware support and some target hardware may not
have this support. See Section 5.1.5 [Disabling breakpoints], page 41. See also
Section 5.1.6 [Break conditions], page 42.

rbreak regex
Set breakpoints on all functions matching the regular expression regex. This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.
The syntax of the regular expression is the standard one used with tools like
‘grep’. Note that this is different from the syntax used by shells, so for instance

36 Debugging with GDB

foo* matches all functions that include an fo followed by zero or more os. There
is an implicit .* leading and trailing the regular expression you supply, so to
match only functions that begin with foo, use ^foo.

When debugging C++ programs, rbreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.

info breakpoints [n]
info break [n]
info watchpoints [n]

Print a table of all breakpoints, watchpoints, and catchpoints set and not
deleted, with the following columns for each breakpoint:

Breakpoint Numbers
Type Breakpoint, watchpoint, or catchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted when
hit.

Enabled or Disabled
Enabled breakpoints are marked with ‘y’. ‘n’ marks breakpoints
that are not enabled.

Address Where the breakpoint is in your program, as a memory address.

What Where the breakpoint is in the source for your program, as a file
and line number.

If a breakpoint is conditional, info break shows the condition on the line fol-
lowing the affected breakpoint; breakpoint commands, if any, are listed after
that.

info break with a breakpoint number n as argument lists only that break-
point. The convenience variable $_ and the default examining-address for the
x command are set to the address of the last breakpoint listed (see Section 8.5
[Examining memory], page 67).

info break displays a count of the number of times the breakpoint has been
hit. This is especially useful in conjunction with the ignore command. You
can ignore a large number of breakpoint hits, look at the breakpoint info to see
how many times the breakpoint was hit, and then run again, ignoring one less
than that number. This will get you quickly to the last hit of that breakpoint.

GDB allows you to set any number of breakpoints at the same place in your program.
There is nothing silly or meaningless about this. When the breakpoints are conditional,
this is even useful (see Section 5.1.6 [Break conditions], page 42).

GDB itself sometimes sets breakpoints in your program for special purposes, such as
proper handling of longjmp (in C programs). These internal breakpoints are assigned
negative numbers, starting with -1; ‘info breakpoints’ does not display them. You can
see these breakpoints with the GDB maintenance command ‘maint info breakpoints’ (see
[maint info breakpoints], page 281).

Chapter 5: Stopping and Continuing 37

5.1.2 Setting watchpoints

You can use a watchpoint to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen.

Depending on your system, watchpoints may be implemented in software or hardware.
GDB does software watchpointing by single-stepping your program and testing the variable’s
value each time, which is hundreds of times slower than normal execution. (But this may
still be worth it, to catch errors where you have no clue what part of your program is the
culprit.)

On some systems, such as HP-UX, gnu/Linux and some other x86-based targets, GDB
includes support for hardware watchpoints, which do not slow down the running of your
program.

watch expr
Set a watchpoint for an expression. GDB will break when expr is written into
by the program and its value changes.

rwatch expr
Set a watchpoint that will break when watch expr is read by the program.

awatch expr
Set a watchpoint that will break when expr is either read or written into by
the program.

info watchpoints
This command prints a list of watchpoints, breakpoints, and catchpoints; it is
the same as info break.

GDB sets a hardware watchpoint if possible. Hardware watchpoints execute very quickly,
and the debugger reports a change in value at the exact instruction where the change occurs.
If GDB cannot set a hardware watchpoint, it sets a software watchpoint, which executes
more slowly and reports the change in value at the next statement, not the instruction,
after the change occurs.

When you issue the watch command, GDB reports

Hardware watchpoint num: expr

if it was able to set a hardware watchpoint.

Currently, the awatch and rwatch commands can only set hardware watchpoints, be-
cause accesses to data that don’t change the value of the watched expression cannot be
detected without examining every instruction as it is being executed, and GDB does not do
that currently. If GDB finds that it is unable to set a hardware breakpoint with the awatch
or rwatch command, it will print a message like this:

Expression cannot be implemented with read/access watchpoint.

Sometimes, GDB cannot set a hardware watchpoint because the data type of the watched
expression is wider than what a hardware watchpoint on the target machine can handle.
For example, some systems can only watch regions that are up to 4 bytes wide; on such sys-
tems you cannot set hardware watchpoints for an expression that yields a double-precision

38 Debugging with GDB

floating-point number (which is typically 8 bytes wide). As a work-around, it might be pos-
sible to break the large region into a series of smaller ones and watch them with separate
watchpoints.

If you set too many hardware watchpoints, GDB might be unable to insert all of them
when you resume the execution of your program. Since the precise number of active watch-
points is unknown until such time as the program is about to be resumed, GDB might not
be able to warn you about this when you set the watchpoints, and the warning will be
printed only when the program is resumed:

Hardware watchpoint num: Could not insert watchpoint

If this happens, delete or disable some of the watchpoints.

The SPARClite DSU will generate traps when a program accesses some data or instruc-
tion address that is assigned to the debug registers. For the data addresses, DSU facilitates
the watch command. However the hardware breakpoint registers can only take two data
watchpoints, and both watchpoints must be the same kind. For example, you can set two
watchpoints with watch commands, two with rwatch commands, or two with awatch com-
mands, but you cannot set one watchpoint with one command and the other with a different
command. GDB will reject the command if you try to mix watchpoints. Delete or disable
unused watchpoint commands before setting new ones.

If you call a function interactively using print or call, any watchpoints you have set
will be inactive until GDB reaches another kind of breakpoint or the call completes.

GDB automatically deletes watchpoints that watch local (automatic) variables, or ex-
pressions that involve such variables, when they go out of scope, that is, when the execution
leaves the block in which these variables were defined. In particular, when the program be-
ing debugged terminates, all local variables go out of scope, and so only watchpoints that
watch global variables remain set. If you rerun the program, you will need to set all such
watchpoints again. One way of doing that would be to set a code breakpoint at the entry
to the main function and when it breaks, set all the watchpoints.

Warning: In multi-thread programs, watchpoints have only limited usefulness.
With the current watchpoint implementation, GDB can only watch the value
of an expression in a single thread. If you are confident that the expression can
only change due to the current thread’s activity (and if you are also confident
that no other thread can become current), then you can use watchpoints as
usual. However, GDB may not notice when a non-current thread’s activity
changes the expression.

HP-UX Warning: In multi-thread programs, software watchpoints have only
limited usefulness. If GDB creates a software watchpoint, it can only watch
the value of an expression in a single thread. If you are confident that the
expression can only change due to the current thread’s activity (and if you
are also confident that no other thread can become current), then you can use
software watchpoints as usual. However, GDB may not notice when a non-
current thread’s activity changes the expression. (Hardware watchpoints, in
contrast, watch an expression in all threads.)

Chapter 5: Stopping and Continuing 39

5.1.3 Setting catchpoints

You can use catchpoints to cause the debugger to stop for certain kinds of program
events, such as C++ exceptions or the loading of a shared library. Use the catch command
to set a catchpoint.

catch event
Stop when event occurs. event can be any of the following:

throw The throwing of a C++ exception.

catch The catching of a C++ exception.

exec A call to exec. This is currently only available for HP-UX.

fork A call to fork. This is currently only available for HP-UX.

vfork A call to vfork. This is currently only available for HP-UX.

load
load libname

The dynamic loading of any shared library, or the loading of the
library libname. This is currently only available for HP-UX.

unload
unload libname

The unloading of any dynamically loaded shared library, or the
unloading of the library libname. This is currently only available
for HP-UX.

tcatch event
Set a catchpoint that is enabled only for one stop. The catchpoint is automat-
ically deleted after the first time the event is caught.

Use the info break command to list the current catchpoints.
There are currently some limitations to C++ exception handling (catch throw and catch

catch) in GDB:
• If you call a function interactively, GDB normally returns control to you when the

function has finished executing. If the call raises an exception, however, the call may
bypass the mechanism that returns control to you and cause your program either to
abort or to simply continue running until it hits a breakpoint, catches a signal that
GDB is listening for, or exits. This is the case even if you set a catchpoint for the
exception; catchpoints on exceptions are disabled within interactive calls.

• You cannot raise an exception interactively.
• You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling: if you need to know
exactly where an exception is raised, it is better to stop before the exception handler is
called, since that way you can see the stack before any unwinding takes place. If you set
a breakpoint in an exception handler instead, it may not be easy to find out where the
exception was raised.

40 Debugging with GDB

To stop just before an exception handler is called, you need some knowledge of the
implementation. In the case of gnu C++, exceptions are raised by calling a library function
named __raise_exception which has the following ANSI C interface:

/* addr is where the exception identifier is stored.
id is the exception identifier. */

void __raise_exception (void **addr, void *id);

To make the debugger catch all exceptions before any stack unwinding takes place, set a
breakpoint on __raise_exception (see Section 5.1 [Breakpoints; watchpoints; and excep-
tions], page 33).

With a conditional breakpoint (see Section 5.1.6 [Break conditions], page 42) that de-
pends on the value of id, you can stop your program when a specific exception is raised.
You can use multiple conditional breakpoints to stop your program when any of a number
of exceptions are raised.

5.1.4 Deleting breakpoints

It is often necessary to eliminate a breakpoint, watchpoint, or catchpoint once it has
done its job and you no longer want your program to stop there. This is called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are in your
program. With the delete command you can delete individual breakpoints, watchpoints,
or catchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores
breakpoints on the first instruction to be executed when you continue execution without
changing the execution address.

clear Delete any breakpoints at the next instruction to be executed in the selected
stack frame (see Section 6.3 [Selecting a frame], page 55). When the innermost
frame is selected, this is a good way to delete a breakpoint where your program
just stopped.

clear function
clear filename:function

Delete any breakpoints set at entry to the function function.

clear linenum
clear filename:linenum

Delete any breakpoints set at or within the code of the specified line.

delete [breakpoints] [range...]
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint ranges
specified as arguments. If no argument is specified, delete all breakpoints (GDB
asks confirmation, unless you have set confirm off). You can abbreviate this
command as d.

Chapter 5: Stopping and Continuing 41

5.1.5 Disabling breakpoints

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might prefer to disable
it. This makes the breakpoint inoperative as if it had been deleted, but remembers the
information on the breakpoint so that you can enable it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with the enable and
disable commands, optionally specifying one or more breakpoint numbers as arguments.
Use info break or info watch to print a list of breakpoints, watchpoints, and catchpoints
if you do not know which numbers to use.

A breakpoint, watchpoint, or catchpoint can have any of four different states of enable-
ment:

• Enabled. The breakpoint stops your program. A breakpoint set with the break com-
mand starts out in this state.

• Disabled. The breakpoint has no effect on your program.

• Enabled once. The breakpoint stops your program, but then becomes disabled.

• Enabled for deletion. The breakpoint stops your program, but immediately after it
does so it is deleted permanently. A breakpoint set with the tbreak command starts
out in this state.

You can use the following commands to enable or disable breakpoints, watchpoints, and
catchpoints:

disable [breakpoints] [range...]
Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the breakpoint
is enabled again later. You may abbreviate disable as dis.

enable [breakpoints] [range...]
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints] once range...
Enable the specified breakpoints temporarily. GDB disables any of these break-
points immediately after stopping your program.

enable [breakpoints] delete range...
Enable the specified breakpoints to work once, then die. GDB deletes any of
these breakpoints as soon as your program stops there.

Except for a breakpoint set with tbreak (see Section 5.1.1 [Setting breakpoints],
page 34), breakpoints that you set are initially enabled; subsequently, they become
disabled or enabled only when you use one of the commands above. (The command until
can set and delete a breakpoint of its own, but it does not change the state of your other
breakpoints; see Section 5.2 [Continuing and stepping], page 45.)

42 Debugging with GDB

5.1.6 Break conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is just a Boolean expression
in your programming language (see Section 8.1 [Expressions], page 63). A breakpoint with
a condition evaluates the expression each time your program reaches it, and your program
stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you
want to stop when the assertion is violated—that is, when the condition is false. In C, if
you want to test an assertion expressed by the condition assert, you should set the condition
‘! assert’ on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint
is inspecting the value of an expression anyhow—but it might be simpler, say, to just set a
watchpoint on a variable name, and specify a condition that tests whether the new value is
an interesting one.

Break conditions can have side effects, and may even call functions in your program.
This can be useful, for example, to activate functions that log program progress, or to
use your own print functions to format special data structures. The effects are completely
predictable unless there is another enabled breakpoint at the same address. (In that case,
GDB might see the other breakpoint first and stop your program without checking the
condition of this one.) Note that breakpoint commands are usually more convenient and
flexible than break conditions for the purpose of performing side effects when a breakpoint
is reached (see Section 5.1.7 [Breakpoint command lists], page 43).

Break conditions can be specified when a breakpoint is set, by using ‘if’ in the arguments
to the break command. See Section 5.1.1 [Setting breakpoints], page 34. They can also be
changed at any time with the condition command.

You can also use the if keyword with the watch command. The catch command does
not recognize the if keyword; condition is the only way to impose a further condition on
a catchpoint.

condition bnum expression
Specify expression as the break condition for breakpoint, watchpoint, or catch-
point number bnum. After you set a condition, breakpoint bnum stops your
program only if the value of expression is true (nonzero, in C). When you
use condition, GDB checks expression immediately for syntactic correctness,
and to determine whether symbols in it have referents in the context of your
breakpoint. If expression uses symbols not referenced in the context of the
breakpoint, GDB prints an error message:

No symbol "foo" in current context.

GDB does not actually evaluate expression at the time the condition command
(or a command that sets a breakpoint with a condition, like break if ...) is
given, however. See Section 8.1 [Expressions], page 63.

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

Chapter 5: Stopping and Continuing 43

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using the ignore count of the breakpoint. Every breakpoint has an ignore count, which is
an integer. Most of the time, the ignore count is zero, and therefore has no effect. But if
your program reaches a breakpoint whose ignore count is positive, then instead of stopping,
it just decrements the ignore count by one and continues. As a result, if the ignore count
value is n, the breakpoint does not stop the next n times your program reaches it.

ignore bnum count
Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, your program’s execution does not stop; other
than to decrement the ignore count, GDB takes no action.
To make the breakpoint stop the next time it is reached, specify a count of zero.
When you use continue to resume execution of your program from a break-
point, you can specify an ignore count directly as an argument to continue,
rather than using ignore. See Section 5.2 [Continuing and stepping], page 45.
If a breakpoint has a positive ignore count and a condition, the condition is
not checked. Once the ignore count reaches zero, GDB resumes checking the
condition.
You could achieve the effect of the ignore count with a condition such as
‘$foo-- <= 0’ using a debugger convenience variable that is decremented each
time. See Section 8.9 [Convenience variables], page 76.

Ignore counts apply to breakpoints, watchpoints, and catchpoints.

5.1.7 Breakpoint command lists

You can give any breakpoint (or watchpoint or catchpoint) a series of commands to
execute when your program stops due to that breakpoint. For example, you might want to
print the values of certain expressions, or enable other breakpoints.

commands [bnum]
... command-list ...
end Specify a list of commands for breakpoint number bnum. The commands them-

selves appear on the following lines. Type a line containing just end to terminate
the commands.
To remove all commands from a breakpoint, type commands and follow it im-
mediately with end; that is, give no commands.
With no bnum argument, commands refers to the last breakpoint, watchpoint,
or catchpoint set (not to the breakpoint most recently encountered).

Pressing 〈RET〉 as a means of repeating the last GDB command is disabled within a
command-list.

You can use breakpoint commands to start your program up again. Simply use the
continue command, or step, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, are
ignored. This is because any time you resume execution (even with a simple next or step),

44 Debugging with GDB

you may encounter another breakpoint—which could have its own command list, leading
to ambiguities about which list to execute.

If the first command you specify in a command list is silent, the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints that are
to print a specific message and then continue. If none of the remaining commands print
anything, you see no sign that the breakpoint was reached. silent is meaningful only at
the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely controlled output,
and are often useful in silent breakpoints. See Section 20.4 [Commands for controlled
output], page 174.

For example, here is how you could use breakpoint commands to print the value of x at
entry to foo whenever x is positive.

break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end

One application for breakpoint commands is to compensate for one bug so you can test
for another. Put a breakpoint just after the erroneous line of code, give it a condition
to detect the case in which something erroneous has been done, and give it commands to
assign correct values to any variables that need them. End with the continue command so
that your program does not stop, and start with the silent command so that no output
is produced. Here is an example:

break 403
commands
silent
set x = y + 4
cont
end

5.1.8 Breakpoint menus

Some programming languages (notably C++) permit a single function name to be de-
fined several times, for application in different contexts. This is called overloading. When
a function name is overloaded, ‘break function’ is not enough to tell GDB where you want
a breakpoint. If you realize this is a problem, you can use something like ‘break func-
tion(types)’ to specify which particular version of the function you want. Otherwise, GDB
offers you a menu of numbered choices for different possible breakpoints, and waits for your
selection with the prompt ‘>’. The first two options are always ‘[0] cancel’ and ‘[1] all’.
Typing 1 sets a breakpoint at each definition of function, and typing 0 aborts the break
command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the
overloaded symbol String::after. We choose three particular definitions of that function
name:

Chapter 5: Stopping and Continuing 45

(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
breakpoints.
(gdb)

5.1.9 “Cannot insert breakpoints”

Under some operating systems, breakpoints cannot be used in a program if any other
process is running that program. In this situation, attempting to run or continue a program
with a breakpoint causes GDB to print an error message:

Cannot insert breakpoints.
The same program may be running in another process.

When this happens, you have three ways to proceed:
1. Remove or disable the breakpoints, then continue.
2. Suspend GDB, and copy the file containing your program to a new name. Resume

GDB and use the exec-file command to specify that GDB should run your program
under that name. Then start your program again.

3. Relink your program so that the text segment is nonsharable, using the linker option
‘-N’. The operating system limitation may not apply to nonsharable executables.

A similar message can be printed if you request too many active hardware-assisted
breakpoints and watchpoints:

Stopped; cannot insert breakpoints.
You may have requested too many hardware breakpoints and watchpoints.

This message is printed when you attempt to resume the program, since only then GDB
knows exactly how many hardware breakpoints and watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the hardware-
assisted breakpoints and watchpoints, and then continue.

5.2 Continuing and stepping

Continuing means resuming program execution until your program completes normally.
In contrast, stepping means executing just one more “step” of your program, where “step”
may mean either one line of source code, or one machine instruction (depending on what

46 Debugging with GDB

particular command you use). Either when continuing or when stepping, your program may
stop even sooner, due to a breakpoint or a signal. (If it stops due to a signal, you may want
to use handle, or use ‘signal 0’ to resume execution. See Section 5.3 [Signals], page 48.)

continue [ignore-count]
c [ignore-count]
fg [ignore-count]

Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed. The optional argument
ignore-count allows you to specify a further number of times to ignore a break-
point at this location; its effect is like that of ignore (see Section 5.1.6 [Break
conditions], page 42).

The argument ignore-count is meaningful only when your program stopped due
to a breakpoint. At other times, the argument to continue is ignored.

The synonyms c and fg (for foreground, as the debugged program is deemed
to be the foreground program) are provided purely for convenience, and have
exactly the same behavior as continue.

To resume execution at a different place, you can use return (see Section 14.4 [Returning
from a function], page 125) to go back to the calling function; or jump (see Section 14.2
[Continuing at a different address], page 124) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Section 5.1 [Breakpoints;
watchpoints; and catchpoints], page 33) at the beginning of the function or the section
of your program where a problem is believed to lie, run your program until it stops at
that breakpoint, and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

step Continue running your program until control reaches a different source line,
then stop it and return control to GDB. This command is abbreviated s.

Warning: If you use the step command while control is within
a function that was compiled without debugging information, ex-
ecution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function
which is compiled without debugging information. To step through
functions without debugging information, use the stepi command,
described below.

The step command only stops at the first instruction of a source line. This pre-
vents the multiple stops that could otherwise occur in switch statements, for
loops, etc. step continues to stop if a function that has debugging information
is called within the line. In other words, step steps inside any functions called
within the line.

Also, the step command only enters a function if there is line number infor-
mation for the function. Otherwise it acts like the next command. This avoids
problems when using cc -gl on MIPS machines. Previously, step entered sub-
routines if there was any debugging information about the routine.

Chapter 5: Stopping and Continuing 47

step count
Continue running as in step, but do so count times. If a breakpoint is reached,
or a signal not related to stepping occurs before count steps, stepping stops
right away.

next [count]
Continue to the next source line in the current (innermost) stack frame. This
is similar to step, but function calls that appear within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the original stack level that was executing when you gave the
next command. This command is abbreviated n.
An argument count is a repeat count, as for step.
The next command only stops at the first instruction of a source line. This
prevents multiple stops that could otherwise occur in switch statements, for
loops, etc.

set step-mode
set step-mode on

The set step-mode on command causes the step command to stop at the first
instruction of a function which contains no debug line information rather than
stepping over it.
This is useful in cases where you may be interested in inspecting the machine
instructions of a function which has no symbolic info and do not want GDB to
automatically skip over this function.

set step-mode off
Causes the step command to step over any functions which contains no debug
information. This is the default.

finish Continue running until just after function in the selected stack frame returns.
Print the returned value (if any).
Contrast this with the return command (see Section 14.4 [Returning from a
function], page 125).

until
u Continue running until a source line past the current line, in the current stack

frame, is reached. This command is used to avoid single stepping through a loop
more than once. It is like the next command, except that when until encoun-
ters a jump, it automatically continues execution until the program counter is
greater than the address of the jump.
This means that when you reach the end of a loop after single stepping though
it, until makes your program continue execution until it exits the loop. In con-
trast, a next command at the end of a loop simply steps back to the beginning
of the loop, which forces you to step through the next iteration.
until always stops your program if it attempts to exit the current stack frame.
until may produce somewhat counterintuitive results if the order of machine
code does not match the order of the source lines. For example, in the following
excerpt from a debugging session, the f (frame) command shows that execution
is stopped at line 206; yet when we use until, we get to line 195:

48 Debugging with GDB

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();
(gdb) until
195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated
code for the loop closure test at the end, rather than the start, of the loop—
even though the test in a C for-loop is written before the body of the loop.
The until command appeared to step back to the beginning of the loop when
it advanced to this expression; however, it has not really gone to an earlier
statement—not in terms of the actual machine code.
until with no argument works by means of single instruction stepping, and
hence is slower than until with an argument.

until location
u location Continue running your program until either the specified location is reached,

or the current stack frame returns. location is any of the forms of argument
acceptable to break (see Section 5.1.1 [Setting breakpoints], page 34). This form
of the command uses breakpoints, and hence is quicker than until without an
argument.

stepi
stepi arg
si Execute one machine instruction, then stop and return to the debugger.

It is often useful to do ‘display/i $pc’ when stepping by machine instructions.
This makes GDB automatically display the next instruction to be executed,
each time your program stops. See Section 8.6 [Automatic display], page 68.
An argument is a repeat count, as in step.

nexti
nexti arg
ni Execute one machine instruction, but if it is a function call, proceed until the

function returns.
An argument is a repeat count, as in next.

5.3 Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For example,
in Unix SIGINT is the signal a program gets when you type an interrupt character (often C-

c); SIGSEGV is the signal a program gets from referencing a place in memory far away from
all the areas in use; SIGALRM occurs when the alarm clock timer goes off (which happens
only if your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (they kill your program
immediately) if the program has not specified in advance some other way to handle the
signal. SIGINT does not indicate an error in your program, but it is normally fatal so it can
carry out the purpose of the interrupt: to kill the program.

Chapter 5: Stopping and Continuing 49

GDB has the ability to detect any occurrence of a signal in your program. You can tell
GDB in advance what to do for each kind of signal.

Normally, GDB is set up to let the non-erroneous signals like SIGALRM be silently passed
to your program (so as not to interfere with their role in the program’s functioning) but to
stop your program immediately whenever an error signal happens. You can change these
settings with the handle command.

info signals
info handle

Print a table of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of all the defined types of
signals.
info handle is an alias for info signals.

handle signal keywords...
Change the way GDB handles signal signal. signal can be the number of a signal
or its name (with or without the ‘SIG’ at the beginning); a list of signal numbers
of the form ‘low-high’; or the word ‘all’, meaning all the known signals. The
keywords say what change to make.

The keywords allowed by the handle command can be abbreviated. Their full names
are:

nostop GDB should not stop your program when this signal happens. It may still print
a message telling you that the signal has come in.

stop GDB should stop your program when this signal happens. This implies the
print keyword as well.

print GDB should print a message when this signal happens.

noprint GDB should not mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass
noignore GDB should allow your program to see this signal; your program can handle

the signal, or else it may terminate if the signal is fatal and not handled. pass
and noignore are synonyms.

nopass
ignore GDB should not allow your program to see this signal. nopass and ignore are

synonyms.

When a signal stops your program, the signal is not visible to the program until you
continue. Your program sees the signal then, if pass is in effect for the signal in question
at that time. In other words, after GDB reports a signal, you can use the handle command
with pass or nopass to control whether your program sees that signal when you continue.

The default is set to nostop, noprint, pass for non-erroneous signals such as SIGALRM,
SIGWINCH and SIGCHLD, and to stop, print, pass for the erroneous signals.

You can also use the signal command to prevent your program from seeing a signal, or
cause it to see a signal it normally would not see, or to give it any signal at any time. For

50 Debugging with GDB

example, if your program stopped due to some sort of memory reference error, you might
store correct values into the erroneous variables and continue, hoping to see more execution;
but your program would probably terminate immediately as a result of the fatal signal once
it saw the signal. To prevent this, you can continue with ‘signal 0’. See Section 14.3
[Giving your program a signal], page 125.

5.4 Stopping and starting multi-thread programs

When your program has multiple threads (see Section 4.9 [Debugging programs with
multiple threads], page 28), you can choose whether to set breakpoints on all threads, or
on a particular thread.

break linespec thread threadno
break linespec thread threadno if ...

linespec specifies source lines; there are several ways of writing them, but the
effect is always to specify some source line.
Use the qualifier ‘thread threadno’ with a breakpoint command to specify that
you only want GDB to stop the program when a particular thread reaches this
breakpoint. threadno is one of the numeric thread identifiers assigned by GDB,
shown in the first column of the ‘info threads’ display.
If you do not specify ‘thread threadno’ when you set a breakpoint, the break-
point applies to all threads of your program.
You can use the thread qualifier on conditional breakpoints as well; in this
case, place ‘thread threadno’ before the breakpoint condition, like this:

(gdb) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution stop,
not just the current thread. This allows you to examine the overall state of the program,
including switching between threads, without worrying that things may change underfoot.

Conversely, whenever you restart the program, all threads start executing. This is true
even when single-stepping with commands like step or next.

In particular, GDB cannot single-step all threads in lockstep. Since thread scheduling
is up to your debugging target’s operating system (not controlled by GDB), other threads
may execute more than one statement while the current thread completes a single step.
Moreover, in general other threads stop in the middle of a statement, rather than at a clean
statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or even
single-stepping. This happens whenever some other thread runs into a breakpoint, a signal,
or an exception before the first thread completes whatever you requested.

On some OSes, you can lock the OS scheduler and thus allow only a single thread to
run.

set scheduler-locking mode
Set the scheduler locking mode. If it is off, then there is no locking and any
thread may run at any time. If on, then only the current thread may run
when the inferior is resumed. The step mode optimizes for single-stepping.

Chapter 5: Stopping and Continuing 51

It stops other threads from “seizing the prompt” by preempting the current
thread while you are stepping. Other threads will only rarely (or never) get a
chance to run when you step. They are more likely to run when you ‘next’ over
a function call, and they are completely free to run when you use commands
like ‘continue’, ‘until’, or ‘finish’. However, unless another thread hits a
breakpoint during its timeslice, they will never steal the GDB prompt away
from the thread that you are debugging.

show scheduler-locking
Display the current scheduler locking mode.

52 Debugging with GDB

Chapter 6: Examining the Stack 53

6 Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped
and how it got there.

Each time your program performs a function call, information about the call is generated.
That information includes the location of the call in your program, the arguments of the
call, and the local variables of the function being called. The information is saved in a block
of data called a stack frame. The stack frames are allocated in a region of memory called
the call stack.

When your program stops, the GDB commands for examining the stack allow you to
see all of this information.

One of the stack frames is selected by GDB and many GDB commands refer implicitly
to the selected frame. In particular, whenever you ask GDB for the value of a variable in
your program, the value is found in the selected frame. There are special GDB commands
to select whichever frame you are interested in. See Section 6.3 [Selecting a frame], page 55.

When your program stops, GDB automatically selects the currently executing frame and
describes it briefly, similar to the frame command (see Section 6.4 [Information about a
frame], page 56).

6.1 Stack frames

The call stack is divided up into contiguous pieces called stack frames, or frames for
short; each frame is the data associated with one call to one function. The frame contains
the arguments given to the function, the function’s local variables, and the address at which
the function is executing.

When your program is started, the stack has only one frame, that of the function main.
This is called the initial frame or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation
is eliminated. If a function is recursive, there can be many frames for the same function.
The frame for the function in which execution is actually occurring is called the innermost
frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which has its own address; each kind of computer has a
convention for choosing one byte whose address serves as the address of the frame. Usually
this address is kept in a register called the frame pointer register while execution is going
on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost
frame, one for the frame that called it, and so on upward. These numbers do not really
exist in your program; they are assigned by GDB to give you a way of designating stack
frames in GDB commands.

Some compilers provide a way to compile functions so that they operate without stack
frames. (For example, the gcc option

‘-fomit-frame-pointer’

generates functions without a frame.) This is occasionally done with heavily used li-
brary functions to save the frame setup time. GDB has limited facilities for dealing with

54 Debugging with GDB

these function invocations. If the innermost function invocation has no stack frame, GDB
nevertheless regards it as though it had a separate frame, which is numbered zero as usual,
allowing correct tracing of the function call chain. However, GDB has no provision for
frameless functions elsewhere in the stack.

frame args
The frame command allows you to move from one stack frame to another, and
to print the stack frame you select. args may be either the address of the frame
or the stack frame number. Without an argument, frame prints the current
stack frame.

select-frame
The select-frame command allows you to move from one stack frame to an-
other without printing the frame. This is the silent version of frame.

6.2 Backtraces

A backtrace is a summary of how your program got where it is. It shows one line per
frame, for many frames, starting with the currently executing frame (frame zero), followed
by its caller (frame one), and on up the stack.

backtrace
bt Print a backtrace of the entire stack: one line per frame for all frames in the

stack.
You can stop the backtrace at any time by typing the system interrupt charac-
ter, normally C-c.

backtrace n
bt n Similar, but print only the innermost n frames.

backtrace -n
bt -n Similar, but print only the outermost n frames.

The names where and info stack (abbreviated info s) are additional aliases for
backtrace.

Each line in the backtrace shows the frame number and the function name. The program
counter value is also shown—unless you use set print address off. The backtrace also
shows the source file name and line number, as well as the arguments to the function. The
program counter value is omitted if it is at the beginning of the code for that line number.

Here is an example of a backtrace. It was made with the command ‘bt 3’, so it shows
the innermost three frames.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993

#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71
(More stack frames follow...)

The display for frame zero does not begin with a program counter value, indicating that
your program has stopped at the beginning of the code for line 993 of builtin.c.

Chapter 6: Examining the Stack 55

6.3 Selecting a frame

Most commands for examining the stack and other data in your program work on
whichever stack frame is selected at the moment. Here are the commands for selecting
a stack frame; all of them finish by printing a brief description of the stack frame just
selected.

frame n
f n Select frame number n. Recall that frame zero is the innermost (currently

executing) frame, frame one is the frame that called the innermost one, and so
on. The highest-numbered frame is the one for main.

frame addr
f addr Select the frame at address addr. This is useful mainly if the chaining of stack

frames has been damaged by a bug, making it impossible for GDB to assign
numbers properly to all frames. In addition, this can be useful when your
program has multiple stacks and switches between them.
On the SPARC architecture, frame needs two addresses to select an arbitrary
frame: a frame pointer and a stack pointer.
On the MIPS and Alpha architecture, it needs two addresses: a stack pointer
and a program counter.
On the 29k architecture, it needs three addresses: a register stack pointer, a
program counter, and a memory stack pointer.

up n Move n frames up the stack. For positive numbers n, this advances toward the
outermost frame, to higher frame numbers, to frames that have existed longer.
n defaults to one.

down n Move n frames down the stack. For positive numbers n, this advances toward
the innermost frame, to lower frame numbers, to frames that were created more
recently. n defaults to one. You may abbreviate down as do.

All of these commands end by printing two lines of output describing the frame. The
first line shows the frame number, the function name, the arguments, and the source file
and line number of execution in that frame. The second line shows the text of that source
line.

For example:
(gdb) up
#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)

at env.c:10
10 read_input_file (argv[i]);

After such a printout, the list command with no arguments prints ten lines centered
on the point of execution in the frame. See Section 7.1 [Printing source lines], page 57.

up-silently n
down-silently n

These two commands are variants of up and down, respectively; they differ
in that they do their work silently, without causing display of the new frame.
They are intended primarily for use in GDB command scripts, where the output
might be unnecessary and distracting.

56 Debugging with GDB

6.4 Information about a frame

There are several other commands to print information about the selected stack frame.

frame
f When used without any argument, this command does not change which frame

is selected, but prints a brief description of the currently selected stack frame.
It can be abbreviated f. With an argument, this command is used to select a
stack frame. See Section 6.3 [Selecting a frame], page 55.

info frame
info f This command prints a verbose description of the selected stack frame, includ-

ing:
• the address of the frame
• the address of the next frame down (called by this frame)
• the address of the next frame up (caller of this frame)
• the language in which the source code corresponding to this frame is written
• the address of the frame’s arguments
• the address of the frame’s local variables
• the program counter saved in it (the address of execution in the caller

frame)
• which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made
the stack format fail to fit the usual conventions.

info frame addr
info f addr

Print a verbose description of the frame at address addr, without selecting that
frame. The selected frame remains unchanged by this command. This requires
the same kind of address (more than one for some architectures) that you specify
in the frame command. See Section 6.3 [Selecting a frame], page 55.

info args Print the arguments of the selected frame, each on a separate line.

info locals
Print the local variables of the selected frame, each on a separate line. These
are all variables (declared either static or automatic) accessible at the point of
execution of the selected frame.

info catch
Print a list of all the exception handlers that are active in the current stack
frame at the current point of execution. To see other exception handlers, visit
the associated frame (using the up, down, or frame commands); then type info
catch. See Section 5.1.3 [Setting catchpoints], page 39.

Chapter 7: Examining Source Files 57

7 Examining Source Files

GDB can print parts of your program’s source, since the debugging information recorded
in the program tells GDB what source files were used to build it. When your program stops,
GDB spontaneously prints the line where it stopped. Likewise, when you select a stack frame
(see Section 6.3 [Selecting a frame], page 55), GDB prints the line where execution in that
frame has stopped. You can print other portions of source files by explicit command.

If you use GDB through its gnu Emacs interface, you may prefer to use Emacs facilities
to view source; see Chapter 22 [Using GDB under gnu Emacs], page 183.

7.1 Printing source lines

To print lines from a source file, use the list command (abbreviated l). By default, ten
lines are printed. There are several ways to specify what part of the file you want to print.

Here are the forms of the list command most commonly used:

list linenum
Print lines centered around line number linenum in the current source file.

list function
Print lines centered around the beginning of function function.

list Print more lines. If the last lines printed were printed with a list command,
this prints lines following the last lines printed; however, if the last line printed
was a solitary line printed as part of displaying a stack frame (see Chapter 6
[Examining the Stack], page 53), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the list command.
You can change this using set listsize:

set listsize count
Make the list command display count source lines (unless the list argument
explicitly specifies some other number).

show listsize
Display the number of lines that list prints.

Repeating a list command with 〈RET〉 discards the argument, so it is equivalent to
typing just list. This is more useful than listing the same lines again. An exception is
made for an argument of ‘-’; that argument is preserved in repetition so that each repetition
moves up in the source file.

In general, the list command expects you to supply zero, one or two linespecs. Linespecs
specify source lines; there are several ways of writing them, but the effect is always to specify
some source line. Here is a complete description of the possible arguments for list:

list linespec
Print lines centered around the line specified by linespec.

list first,last
Print lines from first to last. Both arguments are linespecs.

58 Debugging with GDB

list ,last Print lines ending with last.

list first,
Print lines starting with first.

list + Print lines just after the lines last printed.

list - Print lines just before the lines last printed.

list As described in the preceding table.

Here are the ways of specifying a single source line—all the kinds of linespec.

number Specifies line number of the current source file. When a list command has
two linespecs, this refers to the same source file as the first linespec.

+offset Specifies the line offset lines after the last line printed. When used as the second
linespec in a list command that has two, this specifies the line offset lines down
from the first linespec.

-offset Specifies the line offset lines before the last line printed.

filename:number
Specifies line number in the source file filename.

function Specifies the line that begins the body of the function function. For example:
in C, this is the line with the open brace.

filename:function
Specifies the line of the open-brace that begins the body of the function function
in the file filename. You only need the file name with a function name to avoid
ambiguity when there are identically named functions in different source files.

*address Specifies the line containing the program address address. address may be any
expression.

7.2 Searching source files

There are two commands for searching through the current source file for a regular
expression.

forward-search regexp
search regexp

The command ‘forward-search regexp’ checks each line, starting with the one
following the last line listed, for a match for regexp. It lists the line that is found.
You can use the synonym ‘search regexp’ or abbreviate the command name as
fo.

reverse-search regexp
The command ‘reverse-search regexp’ checks each line, starting with the one
before the last line listed and going backward, for a match for regexp. It lists
the line that is found. You can abbreviate this command as rev.

Chapter 7: Examining Source Files 59

7.3 Specifying source directories

Executable programs sometimes do not record the directories of the source files from
which they were compiled, just the names. Even when they do, the directories could be
moved between the compilation and your debugging session. GDB has a list of directories
to search for source files; this is called the source path. Each time GDB wants a source
file, it tries all the directories in the list, in the order they are present in the list, until it
finds a file with the desired name. Note that the executable search path is not used for this
purpose. Neither is the current working directory, unless it happens to be in the source
path.

If GDB cannot find a source file in the source path, and the object program records a
directory, GDB tries that directory too. If the source path is empty, and there is no record
of the compilation directory, GDB looks in the current directory as a last resort.

Whenever you reset or rearrange the source path, GDB clears out any information it
has cached about where source files are found and where each line is in the file.

When you start GDB, its source path includes only ‘cdir’ and ‘cwd’, in that order. To
add other directories, use the directory command.

directory dirname ...
dir dirname ...

Add directory dirname to the front of the source path. Several directory names
may be given to this command, separated by ‘:’ (‘;’ on MS-DOS and MS-
Windows, where ‘:’ usually appears as part of absolute file names) or white-
space. You may specify a directory that is already in the source path; this
moves it forward, so GDB searches it sooner.
You can use the string ‘$cdir’ to refer to the compilation directory (if one is
recorded), and ‘$cwd’ to refer to the current working directory. ‘$cwd’ is not
the same as ‘.’—the former tracks the current working directory as it changes
during your GDB session, while the latter is immediately expanded to the
current directory at the time you add an entry to the source path.

directory
Reset the source path to empty again. This requires confirmation.

show directories
Print the source path: show which directories it contains.

If your source path is cluttered with directories that are no longer of interest, GDB may
sometimes cause confusion by finding the wrong versions of source. You can correct the
situation as follows:
1. Use directory with no argument to reset the source path to empty.
2. Use directory with suitable arguments to reinstall the directories you want in the

source path. You can add all the directories in one command.

7.4 Source and machine code

You can use the command info line to map source lines to program addresses (and
vice versa), and the command disassemble to display a range of addresses as machine

60 Debugging with GDB

instructions. When run under gnu Emacs mode, the info line command causes the arrow
to point to the line specified. Also, info line prints addresses in symbolic form as well as
hex.

info line linespec
Print the starting and ending addresses of the compiled code for source line
linespec. You can specify source lines in any of the ways understood by the
list command (see Section 7.1 [Printing source lines], page 57).

For example, we can use info line to discover the location of the object code for the
first line of function m4_changequote:

(gdb) info line m4_changequote
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what source line covers a par-
ticular address:

(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to the starting
address of the line, so that ‘x/i’ is sufficient to begin examining the machine code (see
Section 8.5 [Examining memory], page 67). Also, this address is saved as the value of the
convenience variable $_ (see Section 8.9 [Convenience variables], page 76).

disassemble
This specialized command dumps a range of memory as machine instructions.
The default memory range is the function surrounding the program counter of
the selected frame. A single argument to this command is a program counter
value; GDB dumps the function surrounding this value. Two arguments specify
a range of addresses (first inclusive, second exclusive) to dump.

The following example shows the disassembly of a range of addresses of HP PA-RISC
2.0 code:

(gdb) disas 0x32c4 0x32e4
Dump of assembler code from 0x32c4 to 0x32e4:
0x32c4 <main+204>: addil 0,dp
0x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
0x32cc <main+212>: ldil 0x3000,r31
0x32d0 <main+216>: ble 0x3f8(sr4,r31)
0x32d4 <main+220>: ldo 0(r31),rp
0x32d8 <main+224>: addil -0x800,dp
0x32dc <main+228>: ldo 0x588(r1),r26
0x32e0 <main+232>: ldil 0x3000,r31
End of assembler dump.

Some architectures have more than one commonly-used set of instruction mnemonics or
other syntax.

set disassembly-flavor instruction-set
Select the instruction set to use when disassembling the program via the
disassemble or x/i commands.

Chapter 7: Examining Source Files 61

Currently this command is only defined for the Intel x86 family. You can set
instruction-set to either intel or att. The default is att, the AT&T flavor
used by default by Unix assemblers for x86-based targets.

62 Debugging with GDB

Chapter 8: Examining Data 63

8 Examining Data

The usual way to examine data in your program is with the print command (abbreviated
p), or its synonym inspect. It evaluates and prints the value of an expression of the
language your program is written in (see Chapter 12 [Using GDB with Different Languages],
page 103).

print expr
print /f expr

expr is an expression (in the source language). By default the value of expr is
printed in a format appropriate to its data type; you can choose a different for-
mat by specifying ‘/f ’, where f is a letter specifying the format; see Section 8.4
[Output formats], page 66.

print
print /f If you omit expr, GDB displays the last value again (from the value history ; see

Section 8.8 [Value history], page 75). This allows you to conveniently inspect
the same value in an alternative format.

A more low-level way of examining data is with the x command. It examines data in
memory at a specified address and prints it in a specified format. See Section 8.5 [Examining
memory], page 67.

If you are interested in information about types, or about how the fields of a struct
or a class are declared, use the ptype exp command rather than print. See Chapter 13
[Examining the Symbol Table], page 119.

8.1 Expressions

print and many other GDB commands accept an expression and compute its value. Any
kind of constant, variable or operator defined by the programming language you are using is
valid in an expression in GDB. This includes conditional expressions, function calls, casts,
and string constants. It also includes preprocessor macros, if you compiled your program
to include this information; see Section 4.1 [Compilation], page 23.

GDB supports array constants in expressions input by the user. The syntax is {element,
element. . .}. For example, you can use the command print {1, 2, 3} to build up an array
in memory that is malloced in the target program.

Because C is so widespread, most of the expressions shown in examples in this manual
are in C. See Chapter 12 [Using GDB with Different Languages], page 103, for information
on how to use expressions in other languages.

In this section, we discuss operators that you can use in GDB expressions regardless of
your programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that address in memory.

GDB supports these operators, in addition to those common to programming languages:

@ ‘@’ is a binary operator for treating parts of memory as arrays. See Section 8.3
[Artificial arrays], page 65, for more information.

64 Debugging with GDB

:: ‘::’ allows you to specify a variable in terms of the file or function where it is
defined. See Section 8.2 [Program variables], page 64.

{type} addr
Refers to an object of type type stored at address addr in memory. addr may
be any expression whose value is an integer or pointer (but parentheses are
required around binary operators, just as in a cast). This construct is allowed
regardless of what kind of data is normally supposed to reside at addr.

8.2 Program variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see Section 6.3
[Selecting a frame], page 55); they must be either:

• global (or file-static)

or

• visible according to the scope rules of the programming language from the point of
execution in that frame

This means that in the function
foo (a)

int a;
{

bar (a);
{
int b = test ();
bar (b);

}
}

you can examine and use the variable a whenever your program is executing within the
function foo, but you can only use or examine the variable b while your program is executing
inside the block where b is declared.

There is an exception: you can refer to a variable or function whose scope is a single
source file even if the current execution point is not in this file. But it is possible to have
more than one such variable or function with the same name (in different source files). If
that happens, referring to that name has unpredictable effects. If you wish, you can specify
a static variable in a particular function or file, using the colon-colon notation:

file::variable
function::variable

Here file or function is the name of the context for the static variable. In the case of file
names, you can use quotes to make sure GDB parses the file name as a single word—for
example, to print a global value of x defined in ‘f2.c’:

(gdb) p ’f2.c’::x

This use of ‘::’ is very rarely in conflict with the very similar use of the same notation
in C++. GDB also supports use of the C++ scope resolution operator in GDB expressions.

Chapter 8: Examining Data 65

Warning: Occasionally, a local variable may appear to have the wrong value
at certain points in a function—just after entry to a new scope, and just before
exit.

You may see this problem when you are stepping by machine instructions. This is
because, on most machines, it takes more than one instruction to set up a stack frame
(including local variable definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is completely built. On exit, it
usually also takes more than one machine instruction to destroy a stack frame; after you
begin stepping through that group of instructions, local variable definitions may be gone.

This may also happen when the compiler does significant optimizations. To be sure of
always seeing accurate values, turn off all optimization when compiling.

Another possible effect of compiler optimizations is to optimize unused variables out of
existence, or assign variables to registers (as opposed to memory addresses). Depending
on the support for such cases offered by the debug info format used by the compiler, GDB
might not be able to display values for such local variables. If that happens, GDB will print
a message like this:

No symbol "foo" in current context.

To solve such problems, either recompile without optimizations, or use a different debug
info format, if the compiler supports several such formats. For example, GCC, the gnu

C/C++ compiler usually supports the ‘-gstabs’ option. ‘-gstabs’ produces debug info in
a format that is superior to formats such as COFF. You may be able to use DWARF2
(‘-gdwarf-2’), which is also an effective form for debug info. See section “Options for
Debugging Your Program or gnu CC” in Using gnu CC , for more information.

8.3 Artificial arrays

It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a pointer
exists in the program.

You can do this by referring to a contiguous span of memory as an artificial array, using
the binary operator ‘@’. The left operand of ‘@’ should be the first element of the desired
array and be an individual object. The right operand should be the desired length of the
array. The result is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes from bytes of
memory immediately following those that hold the first element, and so on. Here is an
example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with
p *array@len

The left operand of ‘@’ must reside in memory. Array values made with ‘@’ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when
used in expressions. Artificial arrays most often appear in expressions via the value history
(see Section 8.8 [Value history], page 75), after printing one out.

Another way to create an artificial array is to use a cast. This re-interprets a value as if
it were an array. The value need not be in memory:

66 Debugging with GDB

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in ‘(type[])value’) GDB calcu-
lates the size to fill the value (as ‘sizeof(value)/sizeof(type)’:

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in moderately complex
data structures, the elements of interest may not actually be adjacent—for example, if
you are interested in the values of pointers in an array. One useful work-around in this
situation is to use a convenience variable (see Section 8.9 [Convenience variables], page 76)
as a counter in an expression that prints the first interesting value, and then repeat that
expression via 〈RET〉. For instance, suppose you have an array dtab of pointers to structures,
and you are interested in the values of a field fv in each structure. Here is an example of
what you might type:

set $i = 0
p dtab[$i++]->fv
〈RET〉
〈RET〉
...

8.4 Output formats

By default, GDB prints a value according to its data type. Sometimes this is not what
you want. For example, you might want to print a number in hex, or a pointer in decimal.
Or you might want to view data in memory at a certain address as a character string or as
an instruction. To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:

x Regard the bits of the value as an integer, and print the integer in hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t Print as integer in binary. The letter ‘t’ stands for “two”.1

a Print as an address, both absolute in hexadecimal and as an offset from the
nearest preceding symbol. You can use this format used to discover where (in
what function) an unknown address is located:

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

The command info symbol 0x54320 yields similar results. See Chapter 13
[Symbols], page 119.

1 ‘b’ cannot be used because these format letters are also used with the x command, where ‘b’ stands for
“byte”; see Section 8.5 [Examining memory], page 67.

Chapter 8: Examining Data 67

c Regard as an integer and print it as a character constant.

f Regard the bits of the value as a floating point number and print using typical
floating point syntax.

For example, to print the program counter in hex (see Section 8.10 [Registers], page 77),
type

p/x $pc

Note that no space is required before the slash; this is because command names in GDB
cannot contain a slash.

To reprint the last value in the value history with a different format, you can use the
print command with just a format and no expression. For example, ‘p/x’ reprints the last
value in hex.

8.5 Examining memory

You can use the command x (for “examine”) to examine memory in any of several
formats, independently of your program’s data types.

x/nfu addr
x addr
x Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory to display and how
to format it; addr is an expression giving the address where you want to start displaying
memory. If you use defaults for nfu, you need not type the slash ‘/’. Several commands set
convenient defaults for addr.

n, the repeat count
The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print, ‘s’ (null-terminated
string), or ‘i’ (machine instruction). The default is ‘x’ (hexadecimal) initially.
The default changes each time you use either x or print.

u, the unit size
The unit size is any of

b Bytes.

h Halfwords (two bytes).

w Words (four bytes). This is the initial default.

g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the
next time you use x. (For the ‘s’ and ‘i’ formats, the unit size is ignored and
is normally not written.)

68 Debugging with GDB

addr, starting display address
addr is the address where you want GDB to begin displaying memory. The
expression need not have a pointer value (though it may); it is always inter-
preted as an integer address of a byte of memory. See Section 8.1 [Expressions],
page 63, for more information on expressions. The default for addr is usu-
ally just after the last address examined—but several other commands also set
the default address: info breakpoints (to the address of the last breakpoint
listed), info line (to the starting address of a line), and print (if you use it
to display a value from memory).

For example, ‘x/3uh 0x54320’ is a request to display three halfwords (h) of memory,
formatted as unsigned decimal integers (‘u’), starting at address 0x54320. ‘x/4xw $sp’
prints the four words (‘w’) of memory above the stack pointer (here, ‘$sp’; see Section 8.10
[Registers], page 77) in hexadecimal (‘x’).

Since the letters indicating unit sizes are all distinct from the letters specifying output
formats, you do not have to remember whether unit size or format comes first; either order
works. The output specifications ‘4xw’ and ‘4wx’ mean exactly the same thing. (However,
the count n must come first; ‘wx4’ does not work.)

Even though the unit size u is ignored for the formats ‘s’ and ‘i’, you might still want to
use a count n; for example, ‘3i’ specifies that you want to see three machine instructions,
including any operands. The command disassemble gives an alternative way of inspecting
machine instructions; see Section 7.4 [Source and machine code], page 59.

All the defaults for the arguments to x are designed to make it easy to continue scanning
memory with minimal specifications each time you use x. For example, after you have
inspected three machine instructions with ‘x/3i addr’, you can inspect the next seven with
just ‘x/7’. If you use 〈RET〉 to repeat the x command, the repeat count n is used again; the
other arguments default as for successive uses of x.

The addresses and contents printed by the x command are not saved in the value history
because there is often too much of them and they would get in the way. Instead, GDB
makes these values available for subsequent use in expressions as values of the convenience
variables $_ and $__. After an x command, the last address examined is available for use
in expressions in the convenience variable $_. The contents of that address, as examined,
are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units were
printed on the last line of output.

8.6 Automatic display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the automatic display list so that GDB prints its
value each time your program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

Chapter 8: Examining Data 69

This display shows item numbers, expressions and their current values. As with displays
you request manually using x or print, you can specify the output format you prefer; in
fact, display decides whether to use print or x depending on how elaborate your format
specification is—it uses x if you specify a unit size, or one of the two formats (‘i’ and ‘s’)
that are only supported by x; otherwise it uses print.

display expr
Add the expression expr to the list of expressions to display each time your
program stops. See Section 8.1 [Expressions], page 63.

display does not repeat if you press 〈RET〉 again after using it.

display/fmt expr
For fmt specifying only a display format and not a size or count, add the
expression expr to the auto-display list but arrange to display it each time in
the specified format fmt. See Section 8.4 [Output formats], page 66.

display/fmt addr
For fmt ‘i’ or ‘s’, or including a unit-size or a number of units, add the expres-
sion addr as a memory address to be examined each time your program stops.
Examining means in effect doing ‘x/fmt addr’. See Section 8.5 [Examining
memory], page 67.

For example, ‘display/i $pc’ can be helpful, to see the machine instruction about to
be executed each time execution stops (‘$pc’ is a common name for the program counter;
see Section 8.10 [Registers], page 77).

undisplay dnums...
delete display dnums...

Remove item numbers dnums from the list of expressions to display.

undisplay does not repeat if you press 〈RET〉 after using it. (Otherwise you
would just get the error ‘No display number ...’.)

disable display dnums...
Disable the display of item numbers dnums. A disabled display item is not
printed automatically, but is not forgotten. It may be enabled again later.

enable display dnums...
Enable display of item numbers dnums. It becomes effective once again in auto
display of its expression, until you specify otherwise.

display Display the current values of the expressions on the list, just as is done when
your program stops.

info display
Print the list of expressions previously set up to display automatically, each
one with its item number, but without showing the values. This includes dis-
abled expressions, which are marked as such. It also includes expressions which
would not be displayed right now because they refer to automatic variables not
currently available.

70 Debugging with GDB

If a display expression refers to local variables, then it does not make sense outside the
lexical context for which it was set up. Such an expression is disabled when execution enters
a context where one of its variables is not defined. For example, if you give the command
display last_char while inside a function with an argument last_char, GDB displays
this argument while your program continues to stop inside that function. When it stops
elsewhere—where there is no variable last_char—the display is disabled automatically.
The next time your program stops where last_char is meaningful, you can enable the
display expression once again.

8.7 Print settings

GDB provides the following ways to control how arrays, structures, and symbols are
printed.

These settings are useful for debugging programs in any language:

set print address
set print address on

GDB prints memory addresses showing the location of stack traces, structure
values, pointer values, breakpoints, and so forth, even when it also displays the
contents of those addresses. The default is on. For example, this is what a
stack frame display looks like with set print address on:

(gdb) f
#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")

at input.c:530
530 if (lquote != def_lquote)

set print address off
Do not print addresses when displaying their contents. For example, this is the
same stack frame displayed with set print address off:

(gdb) set print addr off
(gdb) f
#0 set_quotes (lq="<<", rq=">>") at input.c:530
530 if (lquote != def_lquote)

You can use ‘set print address off’ to eliminate all machine dependent dis-
plays from the GDB interface. For example, with print address off, you
should get the same text for backtraces on all machines—whether or not they
involve pointer arguments.

show print address
Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol plus
an offset. If that symbol does not uniquely identify the address (for example, it is a name
whose scope is a single source file), you may need to clarify. One way to do this is with
info line, for example ‘info line *0x4537’. Alternately, you can set GDB to print the
source file and line number when it prints a symbolic address:

Chapter 8: Examining Data 71

set print symbol-filename on
Tell GDB to print the source file name and line number of a symbol in the
symbolic form of an address.

set print symbol-filename off
Do not print source file name and line number of a symbol. This is the default.

show print symbol-filename
Show whether or not GDB will print the source file name and line number of a
symbol in the symbolic form of an address.

Another situation where it is helpful to show symbol filenames and line numbers is when
disassembling code; GDB shows you the line number and source file that corresponds to
each instruction.

Also, you may wish to see the symbolic form only if the address being printed is reason-
ably close to the closest earlier symbol:

set print max-symbolic-offset max-offset
Tell GDB to only display the symbolic form of an address if the offset between
the closest earlier symbol and the address is less than max-offset. The default
is 0, which tells GDB to always print the symbolic form of an address if any
symbol precedes it.

show print max-symbolic-offset
Ask how large the maximum offset is that GDB prints in a symbolic address.

If you have a pointer and you are not sure where it points, try ‘set print
symbol-filename on’. Then you can determine the name and source file location of the
variable where it points, using ‘p/a pointer’. This interprets the address in symbolic form.
For example, here GDB shows that a variable ptt points at another variable t, defined in
‘hi2.c’:

(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, ‘p/a’ does not show the
symbol name and filename of the referent, even with the appropriate set print
options turned on.

Other settings control how different kinds of objects are printed:

set print array
set print array on

Pretty print arrays. This format is more convenient to read, but uses more
space. The default is off.

set print array off
Return to compressed format for arrays.

show print array
Show whether compressed or pretty format is selected for displaying arrays.

72 Debugging with GDB

set print elements number-of-elements
Set a limit on how many elements of an array GDB will print. If GDB is printing
a large array, it stops printing after it has printed the number of elements set
by the set print elements command. This limit also applies to the display of
strings. When GDB starts, this limit is set to 200. Setting number-of-elements
to zero means that the printing is unlimited.

show print elements
Display the number of elements of a large array that GDB will print. If the
number is 0, then the printing is unlimited.

set print null-stop
Cause GDB to stop printing the characters of an array when the first null

is encountered. This is useful when large arrays actually contain only short
strings. The default is off.

set print pretty on
Cause GDB to print structures in an indented format with one member per
line, like this:

$1 = {
next = 0x0,
flags = {

sweet = 1,
sour = 1

},
meat = 0x54 "Pork"

}

set print pretty off
Cause GDB to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

This is the default format.

show print pretty
Show which format GDB is using to print structures.

set print sevenbit-strings on
Print using only seven-bit characters; if this option is set, GDB displays any
eight-bit characters (in strings or character values) using the notation \nnn.
This setting is best if you are working in English (ascii) and you use the high-
order bit of characters as a marker or “meta” bit.

set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more international char-
acter sets, and is the default.

show print sevenbit-strings
Show whether or not GDB is printing only seven-bit characters.

set print union on
Tell GDB to print unions which are contained in structures. This is the default
setting.

Chapter 8: Examining Data 73

set print union off
Tell GDB not to print unions which are contained in structures.

show print union
Ask GDB whether or not it will print unions which are contained in structures.
For example, given the declarations

typedef enum {Tree, Bug} Species;
typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly}

Bug_forms;

struct thing {
Species it;
union {

Tree_forms tree;
Bug_forms bug;

} form;
};

struct thing foo = {Tree, {Acorn}};

with set print union on in effect ‘p foo’ would print
$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in effect it would print
$1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

set print demangle
set print demangle on

Print C++ names in their source form rather than in the encoded (“mangled”)
form passed to the assembler and linker for type-safe linkage. The default is
on.

show print demangle
Show whether C++ names are printed in mangled or demangled form.

set print asm-demangle
set print asm-demangle on

Print C++ names in their source form rather than their mangled form, even in
assembler code printouts such as instruction disassemblies. The default is off.

show print asm-demangle
Show whether C++ names in assembly listings are printed in mangled or de-
mangled form.

set demangle-style style
Choose among several encoding schemes used by different compilers to represent
C++ names. The choices for style are currently:

auto Allow GDB to choose a decoding style by inspecting your program.

74 Debugging with GDB

gnu Decode based on the gnu C++ compiler (g++) encoding algorithm.
This is the default.

hp Decode based on the HP ANSI C++ (aCC) encoding algorithm.

lucid Decode based on the Lucid C++ compiler (lcc) encoding algorithm.

arm Decode using the algorithm in the C++ Annotated Reference Man-
ual. Warning: this setting alone is not sufficient to allow debug-
ging cfront-generated executables. GDB would require further
enhancement to permit that.

If you omit style, you will see a list of possible formats.

show demangle-style
Display the encoding style currently in use for decoding C++ symbols.

set print object
set print object on

When displaying a pointer to an object, identify the actual (derived) type of
the object rather than the declared type, using the virtual function table.

set print object off
Display only the declared type of objects, without reference to the virtual func-
tion table. This is the default setting.

show print object
Show whether actual, or declared, object types are displayed.

set print static-members
set print static-members on

Print static members when displaying a C++ object. The default is on.

set print static-members off
Do not print static members when displaying a C++ object.

show print static-members
Show whether C++ static members are printed, or not.

set print vtbl
set print vtbl on

Pretty print C++ virtual function tables. The default is off. (The vtbl com-
mands do not work on programs compiled with the HP ANSI C++ compiler
(aCC).)

set print vtbl off
Do not pretty print C++ virtual function tables.

show print vtbl
Show whether C++ virtual function tables are pretty printed, or not.

Chapter 8: Examining Data 75

8.8 Value history

Values printed by the print command are saved in the GDB value history. This allows
you to refer to them in other expressions. Values are kept until the symbol table is re-read
or discarded (for example with the file or symbol-file commands). When the symbol
table changes, the value history is discarded, since the values may contain pointers back to
the types defined in the symbol table.

The values printed are given history numbers by which you can refer to them. These
are successive integers starting with one. print shows you the history number assigned to
a value by printing ‘$num = ’ before the value; here num is the history number.

To refer to any previous value, use ‘$’ followed by the value’s history number. The way
print labels its output is designed to remind you of this. Just $ refers to the most recent
value in the history, and $$ refers to the value before that. $$n refers to the nth value from
the end; $$2 is the value just prior to $$, $$1 is equivalent to $$, and $$0 is equivalent to
$.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It suffices to type

p *$

If you have a chain of structures where the component next points to the next one, you
can print the contents of the next one with this:

p *$.next

You can print successive links in the chain by repeating this command—which you can do
by just typing 〈RET〉.

Note that the history records values, not expressions. If the value of x is 4 and you type
these commands:

print x
set x=5

then the value recorded in the value history by the print command remains 4 even though
the value of x has changed.

show values
Print the last ten values in the value history, with their item numbers. This is
like ‘p $$9’ repeated ten times, except that show values does not change the
history.

show values n
Print ten history values centered on history item number n.

show values +
Print ten history values just after the values last printed. If no more values are
available, show values + produces no display.

Pressing 〈RET〉 to repeat show values n has exactly the same effect as ‘show values +’.

76 Debugging with GDB

8.9 Convenience variables

GDB provides convenience variables that you can use within GDB to hold on to a value
and refer to it later. These variables exist entirely within GDB; they are not part of your
program, and setting a convenience variable has no direct effect on further execution of your
program. That is why you can use them freely.

Convenience variables are prefixed with ‘$’. Any name preceded by ‘$’ can be used for
a convenience variable, unless it is one of the predefined machine-specific register names
(see Section 8.10 [Registers], page 77). (Value history references, in contrast, are numbers
preceded by ‘$’. See Section 8.8 [Value history], page 75.)

You can save a value in a convenience variable with an assignment expression, just as
you would set a variable in your program. For example:

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by object_ptr.
Using a convenience variable for the first time creates it, but its value is void until you

assign a new value. You can alter the value with another assignment at any time.
Convenience variables have no fixed types. You can assign a convenience variable any

type of value, including structures and arrays, even if that variable already has a value of
a different type. The convenience variable, when used as an expression, has the type of its
current value.

show convenience
Print a list of convenience variables used so far, and their values. Abbreviated
show conv.

One of the ways to use a convenience variable is as a counter to be incremented or a
pointer to be advanced. For example, to print a field from successive elements of an array
of structures:

set $i = 0
print bar[$i++]->contents

Repeat that command by typing 〈RET〉.
Some convenience variables are created automatically by GDB and given values likely

to be useful.

$_ The variable $_ is automatically set by the x command to the last address
examined (see Section 8.5 [Examining memory], page 67). Other commands
which provide a default address for x to examine also set $_ to that address;
these commands include info line and info breakpoint. The type of $_ is
void * except when set by the x command, in which case it is a pointer to the
type of $__.

$__ The variable $__ is automatically set by the x command to the value found in
the last address examined. Its type is chosen to match the format in which the
data was printed.

$_exitcode
The variable $_exitcode is automatically set to the exit code when the program
being debugged terminates.

Chapter 8: Examining Data 77

On HP-UX systems, if you refer to a function or variable name that begins with a dollar
sign, GDB searches for a user or system name first, before it searches for a convenience
variable.

8.10 Registers

You can refer to machine register contents, in expressions, as variables with names
starting with ‘$’. The names of registers are different for each machine; use info registers
to see the names used on your machine.

info registers
Print the names and values of all registers except floating-point registers (in
the selected stack frame).

info all-registers
Print the names and values of all registers, including floating-point registers.

info registers regname ...
Print the relativized value of each specified register regname. As discussed in
detail below, register values are normally relative to the selected stack frame.
regname may be any register name valid on the machine you are using, with or
without the initial ‘$’.

GDB has four “standard” register names that are available (in expressions) on most
machines—whenever they do not conflict with an architecture’s canonical mnemonics for
registers. The register names $pc and $sp are used for the program counter register and
the stack pointer. $fp is used for a register that contains a pointer to the current stack
frame, and $ps is used for a register that contains the processor status. For example, you
could print the program counter in hex with

p/x $pc

or print the instruction to be executed next with
x/i $pc

or add four to the stack pointer2 with
set $sp += 4

Whenever possible, these four standard register names are available on your machine
even though the machine has different canonical mnemonics, so long as there is no conflict.
The info registers command shows the canonical names. For example, on the SPARC,
info registers displays the processor status register as $psr but you can also refer to it
as $ps; and on x86-based machines $ps is an alias for the eflags register.

GDB always considers the contents of an ordinary register as an integer when the register
is examined in this way. Some machines have special registers which can hold nothing but
floating point; these registers are considered to have floating point values. There is no way

2 This is a way of removing one word from the stack, on machines where stacks grow downward in memory
(most machines, nowadays). This assumes that the innermost stack frame is selected; setting $sp is not
allowed when other stack frames are selected. To pop entire frames off the stack, regardless of machine
architecture, use return; see Section 14.4 [Returning from a function], page 125.

78 Debugging with GDB

to refer to the contents of an ordinary register as floating point value (although you can
print it as a floating point value with ‘print/f $regname’).

Some registers have distinct “raw” and “virtual” data formats. This means that the data
format in which the register contents are saved by the operating system is not the same
one that your program normally sees. For example, the registers of the 68881 floating point
coprocessor are always saved in “extended” (raw) format, but all C programs expect to work
with “double” (virtual) format. In such cases, GDB normally works with the virtual format
only (the format that makes sense for your program), but the info registers command
prints the data in both formats.

Normally, register values are relative to the selected stack frame (see Section 6.3 [Select-
ing a frame], page 55). This means that you get the value that the register would contain
if all stack frames farther in were exited and their saved registers restored. In order to see
the true contents of hardware registers, you must select the innermost frame (with ‘frame
0’).

However, GDB must deduce where registers are saved, from the machine code generated
by your compiler. If some registers are not saved, or if GDB is unable to locate the saved
registers, the selected stack frame makes no difference.

8.11 Floating point hardware

Depending on the configuration, GDB may be able to give you more information about
the status of the floating point hardware.

info float
Display hardware-dependent information about the floating point unit. The
exact contents and layout vary depending on the floating point chip. Currently,
‘info float’ is supported on the ARM and x86 machines.

8.12 Vector Unit

Depending on the configuration, GDB may be able to give you more information about
the status of the vector unit.

info vector
Display information about the vector unit. The exact contents and layout vary
depending on the hardware.

8.13 Memory region attributes

Memory region attributes allow you to describe special handling required by regions of
your target’s memory. GDB uses attributes to determine whether to allow certain types
of memory accesses; whether to use specific width accesses; and whether to cache target
memory.

Defined memory regions can be individually enabled and disabled. When a memory
region is disabled, GDB uses the default attributes when accessing memory in that region.

Chapter 8: Examining Data 79

Similarly, if no memory regions have been defined, GDB uses the default attributes when
accessing all memory.

When a memory region is defined, it is given a number to identify it; to enable, disable,
or remove a memory region, you specify that number.

mem lower upper attributes...
Define memory region bounded by lower and upper with attributes
attributes Note that upper == 0 is a special case: it is treated as the the
target’s maximum memory address. (0xffff on 16 bit targets, 0xffffffff on 32
bit targets, etc.)

delete mem nums...
Remove memory regions nums

disable mem nums...
Disable memory regions nums A disabled memory region is not forgotten.
It may be enabled again later.

enable mem nums...
Enable memory regions nums

info mem Print a table of all defined memory regions, with the following columns for each
region.

Memory Region Number
Enabled or Disabled.

Enabled memory regions are marked with ‘y’. Disabled memory
regions are marked with ‘n’.

Lo Address
The address defining the inclusive lower bound of the memory re-
gion.

Hi Address
The address defining the exclusive upper bound of the memory
region.

Attributes The list of attributes set for this memory region.

8.13.1 Attributes

8.13.1.1 Memory Access Mode

The access mode attributes set whether GDB may make read or write accesses to a
memory region.

While these attributes prevent GDB from performing invalid memory accesses, they do
nothing to prevent the target system, I/O DMA, etc. from accessing memory.

ro Memory is read only.

wo Memory is write only.

rw Memory is read/write. This is the default.

80 Debugging with GDB

8.13.1.2 Memory Access Size

The acccess size attributes tells GDB to use specific sized accesses in the memory region.
Often memory mapped device registers require specific sized accesses. If no access size
attribute is specified, GDB may use accesses of any size.

8 Use 8 bit memory accesses.

16 Use 16 bit memory accesses.

32 Use 32 bit memory accesses.

64 Use 64 bit memory accesses.

8.13.1.3 Data Cache

The data cache attributes set whether GDB will cache target memory. While this gen-
erally improves performance by reducing debug protocol overhead, it can lead to incorrect
results because GDB does not know about volatile variables or memory mapped device
registers.

cache Enable GDB to cache target memory.

nocache Disable GDB from caching target memory. This is the default.

8.14 Copy between memory and a file

The commands dump, append, and restore are used for copying data between target
memory and a file. Data is written into a file using dump or append, and restored from a file
into memory by using restore. Files may be binary, srec, intel hex, or tekhex (but only
binary files can be appended).

dump binary memory filename start addr end addr
Dump contents of memory from start addr to end addr into raw binary format
file filename.

append binary memory filename start addr end addr
Append contents of memory from start addr to end addr to raw binary format
file filename.

dump binary value filename expression
Dump value of expression into raw binary format file filename.

append binary memory filename expression
Append value of expression to raw binary format file filename.

dump ihex memory filename start addr end addr
Dump contents of memory from start addr to end addr into intel hex format
file filename.

dump ihex value filename expression
Dump value of expression into intel hex format file filename.

Chapter 8: Examining Data 81

dump srec memory filename start addr end addr
Dump contents of memory from start addr to end addr into srec format file
filename.

dump srec value filename expression
Dump value of expression into srec format file filename.

dump tekhex memory filename start addr end addr
Dump contents of memory from start addr to end addr into tekhex format file
filename.

dump tekhex value filename expression
Dump value of expression into tekhex format file filename.

restore filename [binary] bias start end
Restore the contents of file filename into memory. The restore command can
automatically recognize any known bfd file format, except for raw binary. To
restore a raw binary file you must use the optional argument binary after the
filename.
If bias is non-zero, its value will be added to the addresses contained in the file.
Binary files always start at address zero, so they will be restored at address
bias. Other bfd files have a built-in location; they will be restored at offset bias
from that location.
If start and/or end are non-zero, then only data between file offset start and
file offset end will be restored. These offsets are relative to the addresses in the
file, before the bias argument is applied.

82 Debugging with GDB

Chapter 9: C Preprocessor Macros 83

9 C Preprocessor Macros

Some languages, such as C and C++, provide a way to define and invoke “preprocessor
macros” which expand into strings of tokens. GDB can evaluate expressions containing
macro invocations, show the result of macro expansion, and show a macro’s definition,
including where it was defined.

You may need to compile your program specially to provide GDB with information about
preprocessor macros. Most compilers do not include macros in their debugging information,
even when you compile with the ‘-g’ flag. See Section 4.1 [Compilation], page 23.

A program may define a macro at one point, remove that definition later, and then
provide a different definition after that. Thus, at different points in the program, a macro
may have different definitions, or have no definition at all. If there is a current stack frame,
GDB uses the macros in scope at that frame’s source code line. Otherwise, GDB uses the
macros in scope at the current listing location; see Section 7.1 [List], page 57.

At the moment, GDB does not support the ## token-splicing operator, the # stringifica-
tion operator, or variable-arity macros.

Whenever GDB evaluates an expression, it always expands any macro invocations present
in the expression. GDB also provides the following commands for working with macros
explicitly.

macro expand expression
macro exp expression

Show the results of expanding all preprocessor macro invocations in expression.
Since GDB simply expands macros, but does not parse the result, expression
need not be a valid expression; it can be any string of tokens.

macro expand-once expression
macro exp1 expression

(This command is not yet implemented.) Show the results of expanding those
preprocessor macro invocations that appear explicitly in expression. Macro
invocations appearing in that expansion are left unchanged. This command
allows you to see the effect of a particular macro more clearly, without being
confused by further expansions. Since GDB simply expands macros, but does
not parse the result, expression need not be a valid expression; it can be any
string of tokens.

info macro macro
Show the definition of the macro named macro, and describe the source location
where that definition was established.

macro define macro replacement-list
macro define macro(arglist) replacement-list

(This command is not yet implemented.) Introduce a definition for a preproces-
sor macro named macro, invocations of which are replaced by the tokens given
in replacement-list. The first form of this command defines an “object-like”
macro, which takes no arguments; the second form defines a “function-like”
macro, which takes the arguments given in arglist.

84 Debugging with GDB

A definition introduced by this command is in scope in every expression eval-
uated in GDB, until it is removed with the macro undef command, described
below. The definition overrides all definitions for macro present in the program
being debugged, as well as any previous user-supplied definition.

macro undef macro
(This command is not yet implemented.) Remove any user-supplied definition
for the macro named macro. This command only affects definitions provided
with the macro define command, described above; it cannot remove definitions
present in the program being debugged.

Here is a transcript showing the above commands in action. First, we show our source
files:

$ cat sample.c
#include <stdio.h>
#include "sample.h"

#define M 42
#define ADD(x) (M + x)

main ()
{
#define N 28

printf ("Hello, world!\n");
#undef N

printf ("We’re so creative.\n");
#define N 1729

printf ("Goodbye, world!\n");
}
$ cat sample.h
#define Q <
$

Now, we compile the program using the gnu C compiler, GCC. We pass the ‘-gdwarf-2’
and ‘-g3’ flags to ensure the compiler includes information about preprocessor macros in
the debugging information.

$ gcc -gdwarf-2 -g3 sample.c -o sample
$

Now, we start GDB on our sample program:
$ gdb -nw sample
GNU gdb 2002-05-06-cvs
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, ...
(gdb)

We can expand macros and examine their definitions, even when the program is not
running. GDB uses the current listing position to decide which macro definitions are in
scope:

(gdb) list main
3

Chapter 9: C Preprocessor Macros 85

4 #define M 42
5 #define ADD(x) (M + x)
6
7 main ()
8 {
9 #define N 28
10 printf ("Hello, world!\n");
11 #undef N
12 printf ("We’re so creative.\n");
(gdb) info macro ADD
Defined at /home/jimb/gdb/macros/play/sample.c:5
#define ADD(x) (M + x)
(gdb) info macro Q
Defined at /home/jimb/gdb/macros/play/sample.h:1
included at /home/jimb/gdb/macros/play/sample.c:2

#define Q <
(gdb) macro expand ADD(1)
expands to: (42 + 1)
(gdb) macro expand-once ADD(1)
expands to: once (M + 1)
(gdb)

In the example above, note that macro expand-once expands only the macro invocation
explicit in the original text — the invocation of ADD — but does not expand the invocation
of the macro M, which was introduced by ADD.

Once the program is running, GDB uses the macro definitions in force at the source line
of the current stack frame:

(gdb) break main
Breakpoint 1 at 0x8048370: file sample.c, line 10.
(gdb) run
Starting program: /home/jimb/gdb/macros/play/sample

Breakpoint 1, main () at sample.c:10
10 printf ("Hello, world!\n");
(gdb)

At line 10, the definition of the macro N at line 9 is in force:
(gdb) info macro N
Defined at /home/jimb/gdb/macros/play/sample.c:9
#define N 28
(gdb) macro expand N Q M
expands to: 28 < 42
(gdb) print N Q M
$1 = 1
(gdb)

As we step over directives that remove N’s definition, and then give it a new definition,
GDB finds the definition (or lack thereof) in force at each point:

(gdb) next
Hello, world!

86 Debugging with GDB

12 printf ("We’re so creative.\n");
(gdb) info macro N
The symbol ‘N’ has no definition as a C/C++ preprocessor macro
at /home/jimb/gdb/macros/play/sample.c:12
(gdb) next
We’re so creative.
14 printf ("Goodbye, world!\n");
(gdb) info macro N
Defined at /home/jimb/gdb/macros/play/sample.c:13
#define N 1729
(gdb) macro expand N Q M
expands to: 1729 < 42
(gdb) print N Q M
$2 = 0
(gdb)

Chapter 10: Tracepoints 87

10 Tracepoints

In some applications, it is not feasible for the debugger to interrupt the program’s ex-
ecution long enough for the developer to learn anything helpful about its behavior. If the
program’s correctness depends on its real-time behavior, delays introduced by a debugger
might cause the program to change its behavior drastically, or perhaps fail, even when the
code itself is correct. It is useful to be able to observe the program’s behavior without
interrupting it.

Using GDB’s trace and collect commands, you can specify locations in the program,
called tracepoints, and arbitrary expressions to evaluate when those tracepoints are reached.
Later, using the tfind command, you can examine the values those expressions had when
the program hit the tracepoints. The expressions may also denote objects in memory—
structures or arrays, for example—whose values GDB should record; while visiting a partic-
ular tracepoint, you may inspect those objects as if they were in memory at that moment.
However, because GDB records these values without interacting with you, it can do so
quickly and unobtrusively, hopefully not disturbing the program’s behavior.

The tracepoint facility is currently available only for remote targets. See Chapter 16
[Targets], page 135. In addition, your remote target must know how to collect trace data.
This functionality is implemented in the remote stub; however, none of the stubs distributed
with GDB support tracepoints as of this writing.

This chapter describes the tracepoint commands and features.

10.1 Commands to Set Tracepoints

Before running such a trace experiment, an arbitrary number of tracepoints can be set.
Like a breakpoint (see Section 5.1.1 [Set Breaks], page 34), a tracepoint has a number
assigned to it by GDB. Like with breakpoints, tracepoint numbers are successive integers
starting from one. Many of the commands associated with tracepoints take the tracepoint
number as their argument, to identify which tracepoint to work on.

For each tracepoint, you can specify, in advance, some arbitrary set of data that you
want the target to collect in the trace buffer when it hits that tracepoint. The collected data
can include registers, local variables, or global data. Later, you can use GDB commands to
examine the values these data had at the time the tracepoint was hit.

This section describes commands to set tracepoints and associated conditions and ac-
tions.

10.1.1 Create and Delete Tracepoints

trace The trace command is very similar to the break command. Its argument can
be a source line, a function name, or an address in the target program. See
Section 5.1.1 [Set Breaks], page 34. The trace command defines a tracepoint,
which is a point in the target program where the debugger will briefly stop,
collect some data, and then allow the program to continue. Setting a tracepoint
or changing its commands doesn’t take effect until the next tstart command;
thus, you cannot change the tracepoint attributes once a trace experiment is
running.

88 Debugging with GDB

Here are some examples of using the trace command:
(gdb) trace foo.c:121 // a source file and line number

(gdb) trace +2 // 2 lines forward

(gdb) trace my function // first source line of function

(gdb) trace *my function // EXACT start address of function

(gdb) trace *0x2117c4 // an address

You can abbreviate trace as tr.
The convenience variable $tpnum records the tracepoint number of the most
recently set tracepoint.

delete tracepoint [num]
Permanently delete one or more tracepoints. With no argument, the default is
to delete all tracepoints.
Examples:

(gdb) delete trace 1 2 3 // remove three tracepoints

(gdb) delete trace // remove all tracepoints

You can abbreviate this command as del tr.

10.1.2 Enable and Disable Tracepoints

disable tracepoint [num]
Disable tracepoint num, or all tracepoints if no argument num is given. A
disabled tracepoint will have no effect during the next trace experiment, but
it is not forgotten. You can re-enable a disabled tracepoint using the enable
tracepoint command.

enable tracepoint [num]
Enable tracepoint num, or all tracepoints. The enabled tracepoints will become
effective the next time a trace experiment is run.

10.1.3 Tracepoint Passcounts

passcount [n [num]]
Set the passcount of a tracepoint. The passcount is a way to automatically
stop a trace experiment. If a tracepoint’s passcount is n, then the trace exper-
iment will be automatically stopped on the n’th time that tracepoint is hit. If
the tracepoint number num is not specified, the passcount command sets the
passcount of the most recently defined tracepoint. If no passcount is given, the
trace experiment will run until stopped explicitly by the user.
Examples:

(gdb) passcount 5 2 // Stop on the 5th execution of
// tracepoint 2

Chapter 10: Tracepoints 89

(gdb) passcount 12 // Stop on the 12th execution of the
// most recently defined tracepoint.

(gdb) trace foo
(gdb) pass 3
(gdb) trace bar
(gdb) pass 2
(gdb) trace baz
(gdb) pass 1 // Stop tracing when foo has been

// executed 3 times OR when bar has
// been executed 2 times
// OR when baz has been executed 1 time.

10.1.4 Tracepoint Action Lists

actions [num]
This command will prompt for a list of actions to be taken when the tracepoint
is hit. If the tracepoint number num is not specified, this command sets the
actions for the one that was most recently defined (so that you can define a
tracepoint and then say actions without bothering about its number). You
specify the actions themselves on the following lines, one action at a time, and
terminate the actions list with a line containing just end. So far, the only
defined actions are collect and while-stepping.

To remove all actions from a tracepoint, type ‘actions num’ and follow it
immediately with ‘end’.

(gdb) collect data // collect some data

(gdb) while-stepping 5 // single-step 5 times, collect data

(gdb) end // signals the end of actions.

In the following example, the action list begins with collect commands in-
dicating the things to be collected when the tracepoint is hit. Then, in order
to single-step and collect additional data following the tracepoint, a while-
stepping command is used, followed by the list of things to be collected while
stepping. The while-stepping command is terminated by its own separate
end command. Lastly, the action list is terminated by an end command.

(gdb) trace foo
(gdb) actions
Enter actions for tracepoint 1, one per line:
> collect bar,baz
> collect $regs
> while-stepping 12
> collect $fp, $sp
> end

end

90 Debugging with GDB

collect expr1, expr2, ...
Collect values of the given expressions when the tracepoint is hit. This com-
mand accepts a comma-separated list of any valid expressions. In addition to
global, static, or local variables, the following special arguments are supported:

$regs collect all registers

$args collect all function arguments

$locals collect all local variables.

You can give several consecutive collect commands, each one with a single
argument, or one collect command with several arguments separated by com-
mas: the effect is the same.
The command info scope (see Chapter 13 [Symbols], page 119) is particularly
useful for figuring out what data to collect.

while-stepping n
Perform n single-step traces after the tracepoint, collecting new data at each
step. The while-stepping command is followed by the list of what to collect
while stepping (followed by its own end command):

> while-stepping 12
> collect $regs, myglobal
> end

>

You may abbreviate while-stepping as ws or stepping.

10.1.5 Listing Tracepoints

info tracepoints [num]
Display information about the tracepoint num. If you don’t specify a tracepoint
number, displays information about all the tracepoints defined so far. For each
tracepoint, the following information is shown:
• its number
• whether it is enabled or disabled
• its address
• its passcount as given by the passcount n command
• its step count as given by the while-stepping n command
• where in the source files is the tracepoint set
• its action list as given by the actions command

(gdb) info trace
Num Enb Address PassC StepC What
1 y 0x002117c4 0 0 <gdb_asm>
2 y 0x0020dc64 0 0 in g_test at g_test.c:1375
3 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
(gdb)

This command can be abbreviated info tp.

Chapter 10: Tracepoints 91

10.1.6 Starting and Stopping Trace Experiment

tstart This command takes no arguments. It starts the trace experiment, and begins
collecting data. This has the side effect of discarding all the data collected in
the trace buffer during the previous trace experiment.

tstop This command takes no arguments. It ends the trace experiment, and stops
collecting data.
Note: a trace experiment and data collection may stop automatically if any
tracepoint’s passcount is reached (see Section 10.1.3 [Tracepoint Passcounts],
page 88), or if the trace buffer becomes full.

tstatus This command displays the status of the current trace data collection.

Here is an example of the commands we described so far:
(gdb) trace gdb c test
(gdb) actions
Enter actions for tracepoint #1, one per line.
> collect $regs,$locals,$args
> while-stepping 11

> collect $regs
> end

> end
(gdb) tstart
[time passes ...]
(gdb) tstop

10.2 Using the collected data

After the tracepoint experiment ends, you use GDB commands for examining the trace
data. The basic idea is that each tracepoint collects a trace snapshot every time it is hit and
another snapshot every time it single-steps. All these snapshots are consecutively numbered
from zero and go into a buffer, and you can examine them later. The way you examine
them is to focus on a specific trace snapshot. When the remote stub is focused on a trace
snapshot, it will respond to all GDB requests for memory and registers by reading from
the buffer which belongs to that snapshot, rather than from real memory or registers of the
program being debugged. This means that all GDB commands (print, info registers,
backtrace, etc.) will behave as if we were currently debugging the program state as it was
when the tracepoint occurred. Any requests for data that are not in the buffer will fail.

10.2.1 tfind n

The basic command for selecting a trace snapshot from the buffer is tfind n, which finds
trace snapshot number n, counting from zero. If no argument n is given, the next snapshot
is selected.

Here are the various forms of using the tfind command.

tfind start
Find the first snapshot in the buffer. This is a synonym for tfind 0 (since 0 is
the number of the first snapshot).

92 Debugging with GDB

tfind none
Stop debugging trace snapshots, resume live debugging.

tfind end Same as ‘tfind none’.

tfind No argument means find the next trace snapshot.

tfind - Find the previous trace snapshot before the current one. This permits retracing
earlier steps.

tfind tracepoint num
Find the next snapshot associated with tracepoint num. Search proceeds for-
ward from the last examined trace snapshot. If no argument num is given, it
means find the next snapshot collected for the same tracepoint as the current
snapshot.

tfind pc addr
Find the next snapshot associated with the value addr of the program counter.
Search proceeds forward from the last examined trace snapshot. If no argument
addr is given, it means find the next snapshot with the same value of PC as
the current snapshot.

tfind outside addr1, addr2
Find the next snapshot whose PC is outside the given range of addresses.

tfind range addr1, addr2
Find the next snapshot whose PC is between addr1 and addr2.

tfind line [file:]n
Find the next snapshot associated with the source line n. If the optional argu-
ment file is given, refer to line n in that source file. Search proceeds forward
from the last examined trace snapshot. If no argument n is given, it means find
the next line other than the one currently being examined; thus saying tfind
line repeatedly can appear to have the same effect as stepping from line to
line in a live debugging session.

The default arguments for the tfind commands are specifically designed to make it easy
to scan through the trace buffer. For instance, tfind with no argument selects the next
trace snapshot, and tfind - with no argument selects the previous trace snapshot. So, by
giving one tfind command, and then simply hitting 〈RET〉 repeatedly you can examine all
the trace snapshots in order. Or, by saying tfind - and then hitting 〈RET〉 repeatedly you
can examine the snapshots in reverse order. The tfind line command with no argument
selects the snapshot for the next source line executed. The tfind pc command with no
argument selects the next snapshot with the same program counter (PC) as the current
frame. The tfind tracepoint command with no argument selects the next trace snapshot
collected by the same tracepoint as the current one.

In addition to letting you scan through the trace buffer manually, these commands make
it easy to construct GDB scripts that scan through the trace buffer and print out whatever
collected data you are interested in. Thus, if we want to examine the PC, FP, and SP
registers from each trace frame in the buffer, we can say this:

(gdb) tfind start
(gdb) while ($trace frame != -1)

Chapter 10: Tracepoints 93

> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
$trace_frame, $pc, $sp, $fp

> tfind
> end

Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14

Or, if we want to examine the variable X at each source line in the buffer:
(gdb) tfind start
(gdb) while ($trace frame != -1)
> printf "Frame %d, X == %d\n", $trace_frame, X
> tfind line
> end

Frame 0, X = 1
Frame 7, X = 2
Frame 13, X = 255

10.2.2 tdump

This command takes no arguments. It prints all the data collected at the current trace
snapshot.

(gdb) trace 444
(gdb) actions
Enter actions for tracepoint #2, one per line:
> collect $regs, $locals, $args, gdb_long_test
> end

(gdb) tstart

(gdb) tfind line 444
#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
at gdb_test.c:444
444 printp("%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n",)

(gdb) tdump
Data collected at tracepoint 2, trace frame 1:
d0 0xc4aa0085 -995491707
d1 0x18 24
d2 0x80 128

94 Debugging with GDB

d3 0x33 51
d4 0x71aea3d 119204413
d5 0x22 34
d6 0xe0 224
d7 0x380035 3670069
a0 0x19e24a 1696330
a1 0x3000668 50333288
a2 0x100 256
a3 0x322000 3284992
a4 0x3000698 50333336
a5 0x1ad3cc 1758156
fp 0x30bf3c 0x30bf3c
sp 0x30bf34 0x30bf34
ps 0x0 0
pc 0x20b2c8 0x20b2c8
fpcontrol 0x0 0
fpstatus 0x0 0
fpiaddr 0x0 0
p = 0x20e5b4 "gdb-test"
p1 = (void *) 0x11
p2 = (void *) 0x22
p3 = (void *) 0x33
p4 = (void *) 0x44
p5 = (void *) 0x55
p6 = (void *) 0x66
gdb_long_test = 17 ’\021’

(gdb)

10.2.3 save-tracepoints filename

This command saves all current tracepoint definitions together with their actions and
passcounts, into a file ‘filename’ suitable for use in a later debugging session. To read the
saved tracepoint definitions, use the source command (see Section 20.3 [Command Files],
page 173).

10.3 Convenience Variables for Tracepoints

(int) $trace_frame
The current trace snapshot (a.k.a. frame) number, or -1 if no snapshot is se-
lected.

(int) $tracepoint
The tracepoint for the current trace snapshot.

(int) $trace_line
The line number for the current trace snapshot.

(char []) $trace_file
The source file for the current trace snapshot.

Chapter 10: Tracepoints 95

(char []) $trace_func
The name of the function containing $tracepoint.

Note: $trace_file is not suitable for use in printf, use output instead.
Here’s a simple example of using these convenience variables for stepping through all the

trace snapshots and printing some of their data.
(gdb) tfind start

(gdb) while $trace frame != -1
> output $trace_file
> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
> tfind
> end

96 Debugging with GDB

Chapter 11: Debugging Programs That Use Overlays 97

11 Debugging Programs That Use Overlays

If your program is too large to fit completely in your target system’s memory, you can
sometimes use overlays to work around this problem. GDB provides some support for
debugging programs that use overlays.

11.1 How Overlays Work

Suppose you have a computer whose instruction address space is only 64 kilobytes long,
but which has much more memory which can be accessed by other means: special instruc-
tions, segment registers, or memory management hardware, for example. Suppose further
that you want to adapt a program which is larger than 64 kilobytes to run on this system.

One solution is to identify modules of your program which are relatively independent,
and need not call each other directly; call these modules overlays. Separate the overlays
from the main program, and place their machine code in the larger memory. Place your
main program in instruction memory, but leave at least enough space there to hold the
largest overlay as well.

Now, to call a function located in an overlay, you must first copy that overlay’s machine
code from the large memory into the space set aside for it in the instruction memory, and
then jump to its entry point there.

Data Instruction Larger
Address Space Address Space Address Space
+-----------+ +-----------+ +-----------+
| | | | | |
+-----------+ +-----------+ +-----------+<-- overlay 1
| program | | main | .----| overlay 1 | load address
| variables | | program | | +-----------+
| and heap | | | | | |
+-----------+ | | | +-----------+<-- overlay 2
| | +-----------+ | | | load address
+-----------+ | | | .-| overlay 2 |

| | | | | |
mapped --->+-----------+ | | +-----------+
address | | | | | |

| overlay | <-’ | | |
| area | <---’ +-----------+<-- overlay 3
| | <---. | | load address
+-----------+ ‘--| overlay 3 |
| | | |
+-----------+ | |

+-----------+
| |
+-----------+

A code overlay

The diagram (see [A code overlay], page 97) shows a system with separate data and
instruction address spaces. To map an overlay, the program copies its code from the larger

98 Debugging with GDB

address space to the instruction address space. Since the overlays shown here all use the
same mapped address, only one may be mapped at a time. For a system with a single
address space for data and instructions, the diagram would be similar, except that the
program variables and heap would share an address space with the main program and the
overlay area.

An overlay loaded into instruction memory and ready for use is called a mapped overlay;
its mapped address is its address in the instruction memory. An overlay not present (or only
partially present) in instruction memory is called unmapped; its load address is its address
in the larger memory. The mapped address is also called the virtual memory address, or
VMA; the load address is also called the load memory address, or LMA.

Unfortunately, overlays are not a completely transparent way to adapt a program to
limited instruction memory. They introduce a new set of global constraints you must keep
in mind as you design your program:
• Before calling or returning to a function in an overlay, your program must make sure

that overlay is actually mapped. Otherwise, the call or return will transfer control to
the right address, but in the wrong overlay, and your program will probably crash.

• If the process of mapping an overlay is expensive on your system, you will need to
choose your overlays carefully to minimize their effect on your program’s performance.

• The executable file you load onto your system must contain each overlay’s instruc-
tions, appearing at the overlay’s load address, not its mapped address. However, each
overlay’s instructions must be relocated and its symbols defined as if the overlay were
at its mapped address. You can use GNU linker scripts to specify different load and
relocation addresses for pieces of your program; see section “Overlay Description” in
Using ld: the GNU linker.

• The procedure for loading executable files onto your system must be able to load their
contents into the larger address space as well as the instruction and data spaces.

The overlay system described above is rather simple, and could be improved in many
ways:
• If your system has suitable bank switch registers or memory management hardware,

you could use those facilities to make an overlay’s load area contents simply appear at
their mapped address in instruction space. This would probably be faster than copying
the overlay to its mapped area in the usual way.

• If your overlays are small enough, you could set aside more than one overlay area, and
have more than one overlay mapped at a time.

• You can use overlays to manage data, as well as instructions. In general, data overlays
are even less transparent to your design than code overlays: whereas code overlays only
require care when you call or return to functions, data overlays require care every time
you access the data. Also, if you change the contents of a data overlay, you must copy
its contents back out to its load address before you can copy a different data overlay
into the same mapped area.

11.2 Overlay Commands

To use GDB’s overlay support, each overlay in your program must correspond to a
separate section of the executable file. The section’s virtual memory address and load

Chapter 11: Debugging Programs That Use Overlays 99

memory address must be the overlay’s mapped and load addresses. Identifying overlays
with sections allows GDB to determine the appropriate address of a function or variable,
depending on whether the overlay is mapped or not.

GDB’s overlay commands all start with the word overlay; you can abbreviate this as
ov or ovly. The commands are:

overlay off
Disable GDB’s overlay support. When overlay support is disabled, GDB as-
sumes that all functions and variables are always present at their mapped ad-
dresses. By default, GDB’s overlay support is disabled.

overlay manual
Enable manual overlay debugging. In this mode, GDB relies on you to tell it
which overlays are mapped, and which are not, using the overlay map-overlay
and overlay unmap-overlay commands described below.

overlay map-overlay overlay
overlay map overlay

Tell GDB that overlay is now mapped; overlay must be the name of the object
file section containing the overlay. When an overlay is mapped, GDB assumes it
can find the overlay’s functions and variables at their mapped addresses. GDB
assumes that any other overlays whose mapped ranges overlap that of overlay
are now unmapped.

overlay unmap-overlay overlay
overlay unmap overlay

Tell GDB that overlay is no longer mapped; overlay must be the name of the
object file section containing the overlay. When an overlay is unmapped, GDB
assumes it can find the overlay’s functions and variables at their load addresses.

overlay auto
Enable automatic overlay debugging. In this mode, GDB consults a data struc-
ture the overlay manager maintains in the inferior to see which overlays are
mapped. For details, see Section 11.3 [Automatic Overlay Debugging], page 100.

overlay load-target
overlay load

Re-read the overlay table from the inferior. Normally, GDB re-reads the table
GDB automatically each time the inferior stops, so this command should only
be necessary if you have changed the overlay mapping yourself using GDB. This
command is only useful when using automatic overlay debugging.

overlay list-overlays
overlay list

Display a list of the overlays currently mapped, along with their mapped ad-
dresses, load addresses, and sizes.

Normally, when GDB prints a code address, it includes the name of the function the
address falls in:

(gdb) print main
$3 = {int ()} 0x11a0 <main>

100 Debugging with GDB

When overlay debugging is enabled, GDB recognizes code in unmapped overlays, and prints
the names of unmapped functions with asterisks around them. For example, if foo is a
function in an unmapped overlay, GDB prints it this way:

(gdb) overlay list
No sections are mapped.
(gdb) print foo
$5 = {int (int)} 0x100000 <*foo*>

When foo’s overlay is mapped, GDB prints the function’s name normally:
(gdb) overlay list
Section .ov.foo.text, loaded at 0x100000 - 0x100034,

mapped at 0x1016 - 0x104a
(gdb) print foo
$6 = {int (int)} 0x1016 <foo>

When overlay debugging is enabled, GDB can find the correct address for functions and
variables in an overlay, whether or not the overlay is mapped. This allows most GDB com-
mands, like break and disassemble, to work normally, even on unmapped code. However,
GDB’s breakpoint support has some limitations:
• You can set breakpoints in functions in unmapped overlays, as long as GDB can write

to the overlay at its load address.
• GDB can not set hardware or simulator-based breakpoints in unmapped overlays. How-

ever, if you set a breakpoint at the end of your overlay manager (and tell GDB which
overlays are now mapped, if you are using manual overlay management), GDB will
re-set its breakpoints properly.

11.3 Automatic Overlay Debugging

GDB can automatically track which overlays are mapped and which are not, given
some simple co-operation from the overlay manager in the inferior. If you enable automatic
overlay debugging with the overlay auto command (see Section 11.2 [Overlay Commands],
page 98), GDB looks in the inferior’s memory for certain variables describing the current
state of the overlays.

Here are the variables your overlay manager must define to support GDB’s automatic
overlay debugging:

_ovly_table:
This variable must be an array of the following structures:

struct
{

/* The overlay’s mapped address. */
unsigned long vma;

/* The size of the overlay, in bytes. */
unsigned long size;

/* The overlay’s load address. */
unsigned long lma;

Chapter 11: Debugging Programs That Use Overlays 101

/* Non-zero if the overlay is currently mapped;
zero otherwise. */

unsigned long mapped;
}

_novlys: This variable must be a four-byte signed integer, holding the total number of
elements in _ovly_table.

To decide whether a particular overlay is mapped or not, GDB looks for an entry in
_ovly_table whose vma and lma members equal the VMA and LMA of the overlay’s section
in the executable file. When GDB finds a matching entry, it consults the entry’s mapped
member to determine whether the overlay is currently mapped.

In addition, your overlay manager may define a function called _ovly_debug_event. If
this function is defined, GDB will silently set a breakpoint there. If the overlay manager
then calls this function whenever it has changed the overlay table, this will enable GDB to
accurately keep track of which overlays are in program memory, and update any breakpoints
that may be set in overlays. This will allow breakpoints to work even if the overlays are
kept in ROM or other non-writable memory while they are not being executed.

11.4 Overlay Sample Program

When linking a program which uses overlays, you must place the overlays at their load
addresses, while relocating them to run at their mapped addresses. To do this, you must
write a linker script (see section “Overlay Description” in Using ld: the GNU linker). Un-
fortunately, since linker scripts are specific to a particular host system, target architecture,
and target memory layout, this manual cannot provide portable sample code demonstrating
GDB’s overlay support.

However, the GDB source distribution does contain an overlaid program, with linker
scripts for a few systems, as part of its test suite. The program consists of the following
files from ‘gdb/testsuite/gdb.base’:

‘overlays.c’
The main program file.

‘ovlymgr.c’
A simple overlay manager, used by ‘overlays.c’.

‘foo.c’
‘bar.c’
‘baz.c’
‘grbx.c’ Overlay modules, loaded and used by ‘overlays.c’.

‘d10v.ld’
‘m32r.ld’ Linker scripts for linking the test program on the d10v-elf and m32r-elf

targets.

You can build the test program using the d10v-elf GCC cross-compiler like this:
$ d10v-elf-gcc -g -c overlays.c
$ d10v-elf-gcc -g -c ovlymgr.c
$ d10v-elf-gcc -g -c foo.c

102 Debugging with GDB

$ d10v-elf-gcc -g -c bar.c
$ d10v-elf-gcc -g -c baz.c
$ d10v-elf-gcc -g -c grbx.c
$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \

baz.o grbx.o -Wl,-Td10v.ld -o overlays

The build process is identical for any other architecture, except that you must substitute
the appropriate compiler and linker script for the target system for d10v-elf-gcc and
d10v.ld.

Chapter 12: Using GDB with Different Languages 103

12 Using GDB with Different Languages

Although programming languages generally have common aspects, they are rarely ex-
pressed in the same manner. For instance, in ANSI C, dereferencing a pointer p is accom-
plished by *p, but in Modula-2, it is accomplished by p^. Values can also be represented
(and displayed) differently. Hex numbers in C appear as ‘0x1ae’, while in Modula-2 they
appear as ‘1AEH’.

Language-specific information is built into GDB for some languages, allowing you to
express operations like the above in your program’s native language, and allowing GDB to
output values in a manner consistent with the syntax of your program’s native language.
The language you use to build expressions is called the working language.

12.1 Switching between source languages

There are two ways to control the working language—either have GDB set it automat-
ically, or select it manually yourself. You can use the set language command for either
purpose. On startup, GDB defaults to setting the language automatically. The working
language is used to determine how expressions you type are interpreted, how values are
printed, etc.

In addition to the working language, every source file that GDB knows about has its
own working language. For some object file formats, the compiler might indicate which
language a particular source file is in. However, most of the time GDB infers the language
from the name of the file. The language of a source file controls whether C++ names are
demangled—this way backtrace can show each frame appropriately for its own language.
There is no way to set the language of a source file from within GDB, but you can set the
language associated with a filename extension. See Section 12.2 [Displaying the language],
page 104.

This is most commonly a problem when you use a program, such as cfront or f2c, that
generates C but is written in another language. In that case, make the program use #line
directives in its C output; that way GDB will know the correct language of the source code
of the original program, and will display that source code, not the generated C code.

12.1.1 List of filename extensions and languages

If a source file name ends in one of the following extensions, then GDB infers that its
language is the one indicated.

‘.c’ C source file

‘.C’
‘.cc’
‘.cp’
‘.cpp’
‘.cxx’
‘.c++’ C++ source file

‘.f’
‘.F’ Fortran source file

104 Debugging with GDB

‘.mod’ Modula-2 source file

‘.s’
‘.S’ Assembler source file. This actually behaves almost like C, but GDB does not

skip over function prologues when stepping.

In addition, you may set the language associated with a filename extension. See Sec-
tion 12.2 [Displaying the language], page 104.

12.1.2 Setting the working language

If you allow GDB to set the language automatically, expressions are interpreted the same
way in your debugging session and your program.

If you wish, you may set the language manually. To do this, issue the command ‘set
language lang ’, where lang is the name of a language, such as c or modula-2. For a list of
the supported languages, type ‘set language’.

Setting the language manually prevents GDB from updating the working language au-
tomatically. This can lead to confusion if you try to debug a program when the working
language is not the same as the source language, when an expression is acceptable to both
languages—but means different things. For instance, if the current source file were written
in C, and GDB was parsing Modula-2, a command such as:

print a = b + c

might not have the effect you intended. In C, this means to add b and c and place the
result in a. The result printed would be the value of a. In Modula-2, this means to compare
a to the result of b+c, yielding a BOOLEAN value.

12.1.3 Having GDB infer the source language

To have GDB set the working language automatically, use ‘set language local’ or ‘set
language auto’. GDB then infers the working language. That is, when your program stops
in a frame (usually by encountering a breakpoint), GDB sets the working language to the
language recorded for the function in that frame. If the language for a frame is unknown
(that is, if the function or block corresponding to the frame was defined in a source file that
does not have a recognized extension), the current working language is not changed, and
GDB issues a warning.

This may not seem necessary for most programs, which are written entirely in one source
language. However, program modules and libraries written in one source language can be
used by a main program written in a different source language. Using ‘set language auto’
in this case frees you from having to set the working language manually.

12.2 Displaying the language

The following commands help you find out which language is the working language, and
also what language source files were written in.

show language
Display the current working language. This is the language you can use with
commands such as print to build and compute expressions that may involve
variables in your program.

Chapter 12: Using GDB with Different Languages 105

info frame
Display the source language for this frame. This language becomes the working
language if you use an identifier from this frame. See Section 6.4 [Information
about a frame], page 56, to identify the other information listed here.

info source
Display the source language of this source file. See Chapter 13 [Examining the
Symbol Table], page 119, to identify the other information listed here.

In unusual circumstances, you may have source files with extensions not in the standard
list. You can then set the extension associated with a language explicitly:

set extension-language .ext language
Set source files with extension .ext to be assumed to be in the source language
language.

info extensions
List all the filename extensions and the associated languages.

12.3 Type and range checking

Warning: In this release, the GDB commands for type and range checking
are included, but they do not yet have any effect. This section documents the
intended facilities.

Some languages are designed to guard you against making seemingly common errors
through a series of compile- and run-time checks. These include checking the type of
arguments to functions and operators, and making sure mathematical overflows are caught
at run time. Checks such as these help to ensure a program’s correctness once it has been
compiled by eliminating type mismatches, and providing active checks for range errors when
your program is running.

GDB can check for conditions like the above if you wish. Although GDB does not check
the statements in your program, it can check expressions entered directly into GDB for
evaluation via the print command, for example. As with the working language, GDB
can also decide whether or not to check automatically based on your program’s source
language. See Section 12.4 [Supported languages], page 107, for the default settings of
supported languages.

12.3.1 An overview of type checking

Some languages, such as Modula-2, are strongly typed, meaning that the arguments to
operators and functions have to be of the correct type, otherwise an error occurs. These
checks prevent type mismatch errors from ever causing any run-time problems. For example,

1 + 2 ⇒ 3
but

error 1 + 2.3

The second example fails because the CARDINAL 1 is not type-compatible with the REAL
2.3.

For the expressions you use in GDB commands, you can tell the GDB type checker to
skip checking; to treat any mismatches as errors and abandon the expression; or to only

106 Debugging with GDB

issue warnings when type mismatches occur, but evaluate the expression anyway. When
you choose the last of these, GDB evaluates expressions like the second example above, but
also issues a warning.

Even if you turn type checking off, there may be other reasons related to type that
prevent GDB from evaluating an expression. For instance, GDB does not know how to
add an int and a struct foo. These particular type errors have nothing to do with the
language in use, and usually arise from expressions, such as the one described above, which
make little sense to evaluate anyway.

Each language defines to what degree it is strict about type. For instance, both Modula-
2 and C require the arguments to arithmetical operators to be numbers. In C, enumerated
types and pointers can be represented as numbers, so that they are valid arguments to
mathematical operators. See Section 12.4 [Supported languages], page 107, for further
details on specific languages.

GDB provides some additional commands for controlling the type checker:

set check type auto
Set type checking on or off based on the current working language. See Sec-
tion 12.4 [Supported languages], page 107, for the default settings for each
language.

set check type on
set check type off

Set type checking on or off, overriding the default setting for the current working
language. Issue a warning if the setting does not match the language default.
If any type mismatches occur in evaluating an expression while type checking
is on, GDB prints a message and aborts evaluation of the expression.

set check type warn
Cause the type checker to issue warnings, but to always attempt to evaluate the
expression. Evaluating the expression may still be impossible for other reasons.
For example, GDB cannot add numbers and structures.

show type Show the current setting of the type checker, and whether or not GDB is setting
it automatically.

12.3.2 An overview of range checking

In some languages (such as Modula-2), it is an error to exceed the bounds of a type;
this is enforced with run-time checks. Such range checking is meant to ensure program
correctness by making sure computations do not overflow, or indices on an array element
access do not exceed the bounds of the array.

For expressions you use in GDB commands, you can tell GDB to treat range errors in
one of three ways: ignore them, always treat them as errors and abandon the expression,
or issue warnings but evaluate the expression anyway.

A range error can result from numerical overflow, from exceeding an array index bound,
or when you type a constant that is not a member of any type. Some languages, however,
do not treat overflows as an error. In many implementations of C, mathematical overflow

Chapter 12: Using GDB with Different Languages 107

causes the result to “wrap around” to lower values—for example, if m is the largest integer
value, and s is the smallest, then

m + 1 ⇒ s

This, too, is specific to individual languages, and in some cases specific to individual
compilers or machines. See Section 12.4 [Supported languages], page 107, for further details
on specific languages.

GDB provides some additional commands for controlling the range checker:

set check range auto
Set range checking on or off based on the current working language. See Sec-
tion 12.4 [Supported languages], page 107, for the default settings for each
language.

set check range on
set check range off

Set range checking on or off, overriding the default setting for the current work-
ing language. A warning is issued if the setting does not match the language
default. If a range error occurs and range checking is on, then a message is
printed and evaluation of the expression is aborted.

set check range warn
Output messages when the GDB range checker detects a range error, but at-
tempt to evaluate the expression anyway. Evaluating the expression may still
be impossible for other reasons, such as accessing memory that the process does
not own (a typical example from many Unix systems).

show range
Show the current setting of the range checker, and whether or not it is being
set automatically by GDB.

12.4 Supported languages

GDB supports C, C++, Fortran, Java, assembly, and Modula-2. Some GDB features may
be used in expressions regardless of the language you use: the GDB @ and :: operators,
and the ‘{type}addr’ construct (see Section 8.1 [Expressions], page 63) can be used with
the constructs of any supported language.

The following sections detail to what degree each source language is supported by GDB.
These sections are not meant to be language tutorials or references, but serve only as a
reference guide to what the GDB expression parser accepts, and what input and output
formats should look like for different languages. There are many good books written on
each of these languages; please look to these for a language reference or tutorial.

12.4.1 C and C++

Since C and C++ are so closely related, many features of GDB apply to both languages.
Whenever this is the case, we discuss those languages together.

The C++ debugging facilities are jointly implemented by the C++ compiler and GDB.
Therefore, to debug your C++ code effectively, you must compile your C++ programs with
a supported C++ compiler, such as gnu g++, or the HP ANSI C++ compiler (aCC).

108 Debugging with GDB

For best results when using gnu C++, use the stabs debugging format. You can select
that format explicitly with the g++ command-line options ‘-gstabs’ or ‘-gstabs+’. See
section “Options for Debugging Your Program or gnu CC” in Using gnu CC , for more
information.

12.4.1.1 C and C++ operators

Operators must be defined on values of specific types. For instance, + is defined on
numbers, but not on structures. Operators are often defined on groups of types.

For the purposes of C and C++, the following definitions hold:
• Integral types include int with any of its storage-class specifiers; char; enum; and, for

C++, bool.
• Floating-point types include float, double, and long double (if supported by the

target platform).
• Pointer types include all types defined as (type *).
• Scalar types include all of the above.

The following operators are supported. They are listed here in order of increasing prece-
dence:

, The comma or sequencing operator. Expressions in a comma-separated list are
evaluated from left to right, with the result of the entire expression being the
last expression evaluated.

= Assignment. The value of an assignment expression is the value assigned. De-
fined on scalar types.

op= Used in an expression of the form a op= b, and translated to a = a op b. op=
and = have the same precedence. op is any one of the operators |, ^, &, <<, >>,
+, -, *, /, %.

?: The ternary operator. a ? b : c can be thought of as: if a then b else c. a
should be of an integral type.

|| Logical or. Defined on integral types.

&& Logical and. Defined on integral types.

| Bitwise or. Defined on integral types.

^ Bitwise exclusive-or. Defined on integral types.

& Bitwise and. Defined on integral types.

==, != Equality and inequality. Defined on scalar types. The value of these expressions
is 0 for false and non-zero for true.

<, >, <=, >=
Less than, greater than, less than or equal, greater than or equal. Defined on
scalar types. The value of these expressions is 0 for false and non-zero for true.

<<, >> left shift, and right shift. Defined on integral types.

@ The GDB “artificial array” operator (see Section 8.1 [Expressions], page 63).

Chapter 12: Using GDB with Different Languages 109

+, - Addition and subtraction. Defined on integral types, floating-point types and
pointer types.

*, /, % Multiplication, division, and modulus. Multiplication and division are defined
on integral and floating-point types. Modulus is defined on integral types.

++, -- Increment and decrement. When appearing before a variable, the operation is
performed before the variable is used in an expression; when appearing after it,
the variable’s value is used before the operation takes place.

* Pointer dereferencing. Defined on pointer types. Same precedence as ++.

& Address operator. Defined on variables. Same precedence as ++.
For debugging C++, GDB implements a use of ‘&’ beyond what is allowed in
the C++ language itself: you can use ‘&(&ref)’ (or, if you prefer, simply ‘&&ref ’)
to examine the address where a C++ reference variable (declared with ‘&ref ’) is
stored.

- Negative. Defined on integral and floating-point types. Same precedence as ++.

! Logical negation. Defined on integral types. Same precedence as ++.

~ Bitwise complement operator. Defined on integral types. Same precedence as
++.

., -> Structure member, and pointer-to-structure member. For convenience, GDB
regards the two as equivalent, choosing whether to dereference a pointer based
on the stored type information. Defined on struct and union data.

.*, ->* Dereferences of pointers to members.

[] Array indexing. a[i] is defined as *(a+i). Same precedence as ->.

() Function parameter list. Same precedence as ->.

:: C++ scope resolution operator. Defined on struct, union, and class types.

:: Doubled colons also represent the GDB scope operator (see Section 8.1 [Ex-
pressions], page 63). Same precedence as ::, above.

If an operator is redefined in the user code, GDB usually attempts to invoke the redefined
version instead of using the operator’s predefined meaning.

12.4.1.2 C and C++ constants

GDB allows you to express the constants of C and C++ in the following ways:
• Integer constants are a sequence of digits. Octal constants are specified by a leading

‘0’ (i.e. zero), and hexadecimal constants by a leading ‘0x’ or ‘0X’. Constants may also
end with a letter ‘l’, specifying that the constant should be treated as a long value.

• Floating point constants are a sequence of digits, followed by a decimal point, followed
by a sequence of digits, and optionally followed by an exponent. An exponent is of
the form: ‘e[[+]|-]nnn’, where nnn is another sequence of digits. The ‘+’ is optional
for positive exponents. A floating-point constant may also end with a letter ‘f’ or ‘F’,
specifying that the constant should be treated as being of the float (as opposed to the
default double) type; or with a letter ‘l’ or ‘L’, which specifies a long double constant.

110 Debugging with GDB

• Enumerated constants consist of enumerated identifiers, or their integral equivalents.
• Character constants are a single character surrounded by single quotes (’), or a

number—the ordinal value of the corresponding character (usually its ascii value).
Within quotes, the single character may be represented by a letter or by escape
sequences, which are of the form ‘\nnn’, where nnn is the octal representation of
the character’s ordinal value; or of the form ‘\x’, where ‘x’ is a predefined special
character—for example, ‘\n’ for newline.

• String constants are a sequence of character constants surrounded by double quotes (").
Any valid character constant (as described above) may appear. Double quotes within
the string must be preceded by a backslash, so for instance ‘"a\"b’c"’ is a string of
five characters.

• Pointer constants are an integral value. You can also write pointers to constants using
the C operator ‘&’.

• Array constants are comma-separated lists surrounded by braces ‘{’ and ‘}’; for ex-
ample, ‘{1,2,3}’ is a three-element array of integers, ‘{{1,2}, {3,4}, {5,6}}’ is a
three-by-two array, and ‘{&"hi", &"there", &"fred"}’ is a three-element array of
pointers.

12.4.1.3 C++ expressions

GDB expression handling can interpret most C++ expressions.
Warning: GDB can only debug C++ code if you use the proper compiler. Typ-
ically, C++ debugging depends on the use of additional debugging information
in the symbol table, and thus requires special support. In particular, if your
compiler generates a.out, MIPS ecoff, RS/6000 xcoff, or elf with stabs ex-
tensions to the symbol table, these facilities are all available. (With gnu CC,
you can use the ‘-gstabs’ option to request stabs debugging extensions explic-
itly.) Where the object code format is standard coff or dwarf in elf, on the
other hand, most of the C++ support in GDB does not work.

1. Member function calls are allowed; you can use expressions like
count = aml->GetOriginal(x, y)

2. While a member function is active (in the selected stack frame), your expressions have
the same namespace available as the member function; that is, GDB allows implicit
references to the class instance pointer this following the same rules as C++.

3. You can call overloaded functions; GDB resolves the function call to the right definition,
with some restrictions. GDB does not perform overload resolution involving user-
defined type conversions, calls to constructors, or instantiations of templates that do not
exist in the program. It also cannot handle ellipsis argument lists or default arguments.
It does perform integral conversions and promotions, floating-point promotions, arith-
metic conversions, pointer conversions, conversions of class objects to base classes, and
standard conversions such as those of functions or arrays to pointers; it requires an
exact match on the number of function arguments.
Overload resolution is always performed, unless you have specified set overload-
resolution off. See Section 12.4.1.7 [GDB features for C++], page 112.

Chapter 12: Using GDB with Different Languages 111

You must specify set overload-resolution off in order to use an explicit function
signature to call an overloaded function, as in

p ’foo(char,int)’(’x’, 13)

The GDB command-completion facility can simplify this; see Section 3.2 [Command
completion], page 17.

4. GDB understands variables declared as C++ references; you can use them in expressions
just as you do in C++ source—they are automatically dereferenced.
In the parameter list shown when GDB displays a frame, the values of reference vari-
ables are not displayed (unlike other variables); this avoids clutter, since references are
often used for large structures. The address of a reference variable is always shown,
unless you have specified ‘set print address off’.

5. GDB supports the C++ name resolution operator ::—your expressions can use it just as
expressions in your program do. Since one scope may be defined in another, you can use
:: repeatedly if necessary, for example in an expression like ‘scope1::scope2::name’.
GDB also allows resolving name scope by reference to source files, in both C and C++
debugging (see Section 8.2 [Program variables], page 64).

In addition, when used with HP’s C++ compiler, GDB supports calling virtual functions
correctly, printing out virtual bases of objects, calling functions in a base subobject, casting
objects, and invoking user-defined operators.

12.4.1.4 C and C++ defaults

If you allow GDB to set type and range checking automatically, they both default to off
whenever the working language changes to C or C++. This happens regardless of whether
you or GDB selects the working language.

If you allow GDB to set the language automatically, it recognizes source files whose
names end with ‘.c’, ‘.C’, or ‘.cc’, etc, and when GDB enters code compiled from one of
these files, it sets the working language to C or C++. See Section 12.1.3 [Having GDB infer
the source language], page 104, for further details.

12.4.1.5 C and C++ type and range checks

By default, when GDB parses C or C++ expressions, type checking is not used. However,
if you turn type checking on, GDB considers two variables type equivalent if:
• The two variables are structured and have the same structure, union, or enumerated

tag.
• The two variables have the same type name, or types that have been declared equivalent

through typedef.

Range checking, if turned on, is done on mathematical operations. Array indices are not
checked, since they are often used to index a pointer that is not itself an array.

12.4.1.6 GDB and C

The set print union and show print union commands apply to the union type. When
set to ‘on’, any union that is inside a struct or class is also printed. Otherwise, it appears
as ‘{...}’.

112 Debugging with GDB

The @ operator aids in the debugging of dynamic arrays, formed with pointers and a
memory allocation function. See Section 8.1 [Expressions], page 63.

12.4.1.7 GDB features for C++

Some GDB commands are particularly useful with C++, and some are designed specifi-
cally for use with C++. Here is a summary:

breakpoint menus
When you want a breakpoint in a function whose name is overloaded, GDB
breakpoint menus help you specify which function definition you want. See
Section 5.1.8 [Breakpoint menus], page 44.

rbreak regex
Setting breakpoints using regular expressions is helpful for setting breakpoints
on overloaded functions that are not members of any special classes. See Sec-
tion 5.1.1 [Setting breakpoints], page 34.

catch throw
catch catch

Debug C++ exception handling using these commands. See Section 5.1.3 [Set-
ting catchpoints], page 39.

ptype typename
Print inheritance relationships as well as other information for type typename.
See Chapter 13 [Examining the Symbol Table], page 119.

set print demangle
show print demangle
set print asm-demangle
show print asm-demangle

Control whether C++ symbols display in their source form, both when displaying
code as C++ source and when displaying disassemblies. See Section 8.7 [Print
settings], page 70.

set print object
show print object

Choose whether to print derived (actual) or declared types of objects. See
Section 8.7 [Print settings], page 70.

set print vtbl
show print vtbl

Control the format for printing virtual function tables. See Section 8.7 [Print
settings], page 70. (The vtbl commands do not work on programs compiled
with the HP ANSI C++ compiler (aCC).)

set overload-resolution on
Enable overload resolution for C++ expression evaluation. The default is on.
For overloaded functions, GDB evaluates the arguments and searches for a
function whose signature matches the argument types, using the standard C++
conversion rules (see Section 12.4.1.3 [C++ expressions], page 110, for details).
If it cannot find a match, it emits a message.

Chapter 12: Using GDB with Different Languages 113

set overload-resolution off
Disable overload resolution for C++ expression evaluation. For overloaded func-
tions that are not class member functions, GDB chooses the first function of
the specified name that it finds in the symbol table, whether or not its argu-
ments are of the correct type. For overloaded functions that are class member
functions, GDB searches for a function whose signature exactly matches the
argument types.

Overloaded symbol names
You can specify a particular definition of an overloaded symbol, using the same
notation that is used to declare such symbols in C++: type symbol(types) rather
than just symbol. You can also use the GDB command-line word completion
facilities to list the available choices, or to finish the type list for you. See
Section 3.2 [Command completion], page 17, for details on how to do this.

12.4.2 Modula-2

The extensions made to GDB to support Modula-2 only support output from the gnu

Modula-2 compiler (which is currently being developed). Other Modula-2 compilers are not
currently supported, and attempting to debug executables produced by them is most likely
to give an error as GDB reads in the executable’s symbol table.

12.4.2.1 Operators

Operators must be defined on values of specific types. For instance, + is defined on
numbers, but not on structures. Operators are often defined on groups of types. For the
purposes of Modula-2, the following definitions hold:
• Integral types consist of INTEGER, CARDINAL, and their subranges.
• Character types consist of CHAR and its subranges.
• Floating-point types consist of REAL.
• Pointer types consist of anything declared as POINTER TO type.
• Scalar types consist of all of the above.
• Set types consist of SET and BITSET types.
• Boolean types consist of BOOLEAN.

The following operators are supported, and appear in order of increasing precedence:

, Function argument or array index separator.

:= Assignment. The value of var := value is value.

<, > Less than, greater than on integral, floating-point, or enumerated types.

<=, >= Less than or equal to, greater than or equal to on integral, floating-point and
enumerated types, or set inclusion on set types. Same precedence as <.

=, <>, # Equality and two ways of expressing inequality, valid on scalar types. Same
precedence as <. In GDB scripts, only <> is available for inequality, since #
conflicts with the script comment character.

114 Debugging with GDB

IN Set membership. Defined on set types and the types of their members. Same
precedence as <.

OR Boolean disjunction. Defined on boolean types.

AND, & Boolean conjunction. Defined on boolean types.

@ The GDB “artificial array” operator (see Section 8.1 [Expressions], page 63).

+, - Addition and subtraction on integral and floating-point types, or union and
difference on set types.

* Multiplication on integral and floating-point types, or set intersection on set
types.

/ Division on floating-point types, or symmetric set difference on set types. Same
precedence as *.

DIV, MOD Integer division and remainder. Defined on integral types. Same precedence as
*.

- Negative. Defined on INTEGER and REAL data.

^ Pointer dereferencing. Defined on pointer types.

NOT Boolean negation. Defined on boolean types. Same precedence as ^.

. RECORD field selector. Defined on RECORD data. Same precedence as ^.

[] Array indexing. Defined on ARRAY data. Same precedence as ^.

() Procedure argument list. Defined on PROCEDURE objects. Same precedence as
^.

::, . GDB and Modula-2 scope operators.

Warning: Sets and their operations are not yet supported, so GDB treats the
use of the operator IN, or the use of operators +, -, *, /, =, , <>, #, <=, and >=
on sets as an error.

12.4.2.2 Built-in functions and procedures

Modula-2 also makes available several built-in procedures and functions. In describing
these, the following metavariables are used:

a represents an ARRAY variable.

c represents a CHAR constant or variable.

i represents a variable or constant of integral type.

m represents an identifier that belongs to a set. Generally used in the same func-
tion with the metavariable s. The type of s should be SET OF mtype (where
mtype is the type of m).

n represents a variable or constant of integral or floating-point type.

r represents a variable or constant of floating-point type.

t represents a type.

Chapter 12: Using GDB with Different Languages 115

v represents a variable.

x represents a variable or constant of one of many types. See the explanation of
the function for details.

All Modula-2 built-in procedures also return a result, described below.

ABS(n) Returns the absolute value of n.

CAP(c) If c is a lower case letter, it returns its upper case equivalent, otherwise it
returns its argument.

CHR(i) Returns the character whose ordinal value is i.

DEC(v) Decrements the value in the variable v by one. Returns the new value.

DEC(v,i) Decrements the value in the variable v by i. Returns the new value.

EXCL(m,s)
Removes the element m from the set s. Returns the new set.

FLOAT(i) Returns the floating point equivalent of the integer i.

HIGH(a) Returns the index of the last member of a.

INC(v) Increments the value in the variable v by one. Returns the new value.

INC(v,i) Increments the value in the variable v by i. Returns the new value.

INCL(m,s)
Adds the element m to the set s if it is not already there. Returns the new set.

MAX(t) Returns the maximum value of the type t.

MIN(t) Returns the minimum value of the type t.

ODD(i) Returns boolean TRUE if i is an odd number.

ORD(x) Returns the ordinal value of its argument. For example, the ordinal value of a
character is its ascii value (on machines supporting the ascii character set). x
must be of an ordered type, which include integral, character and enumerated
types.

SIZE(x) Returns the size of its argument. x can be a variable or a type.

TRUNC(r) Returns the integral part of r.

VAL(t,i) Returns the member of the type t whose ordinal value is i.

Warning: Sets and their operations are not yet supported, so GDB treats the
use of procedures INCL and EXCL as an error.

12.4.2.3 Constants

GDB allows you to express the constants of Modula-2 in the following ways:
• Integer constants are simply a sequence of digits. When used in an expression, a con-

stant is interpreted to be type-compatible with the rest of the expression. Hexadecimal
integers are specified by a trailing ‘H’, and octal integers by a trailing ‘B’.

116 Debugging with GDB

• Floating point constants appear as a sequence of digits, followed by a decimal point
and another sequence of digits. An optional exponent can then be specified, in the form
‘E[+|-]nnn’, where ‘[+|-]nnn’ is the desired exponent. All of the digits of the floating
point constant must be valid decimal (base 10) digits.

• Character constants consist of a single character enclosed by a pair of like quotes, either
single (’) or double ("). They may also be expressed by their ordinal value (their ascii

value, usually) followed by a ‘C’.
• String constants consist of a sequence of characters enclosed by a pair of like quotes,

either single (’) or double ("). Escape sequences in the style of C are also allowed.
See Section 12.4.1.2 [C and C++ constants], page 109, for a brief explanation of escape
sequences.

• Enumerated constants consist of an enumerated identifier.
• Boolean constants consist of the identifiers TRUE and FALSE.
• Pointer constants consist of integral values only.
• Set constants are not yet supported.

12.4.2.4 Modula-2 defaults

If type and range checking are set automatically by GDB, they both default to on
whenever the working language changes to Modula-2. This happens regardless of whether
you or GDB selected the working language.

If you allow GDB to set the language automatically, then entering code compiled from a
file whose name ends with ‘.mod’ sets the working language to Modula-2. See Section 12.1.3
[Having GDB set the language automatically], page 104, for further details.

12.4.2.5 Deviations from standard Modula-2

A few changes have been made to make Modula-2 programs easier to debug. This is
done primarily via loosening its type strictness:
• Unlike in standard Modula-2, pointer constants can be formed by integers. This allows

you to modify pointer variables during debugging. (In standard Modula-2, the actual
address contained in a pointer variable is hidden from you; it can only be modified
through direct assignment to another pointer variable or expression that returned a
pointer.)

• C escape sequences can be used in strings and characters to represent non-printable
characters. GDB prints out strings with these escape sequences embedded. Single
non-printable characters are printed using the ‘CHR(nnn)’ format.

• The assignment operator (:=) returns the value of its right-hand argument.
• All built-in procedures both modify and return their argument.

12.4.2.6 Modula-2 type and range checks

Warning: in this release, GDB does not yet perform type or range checking.
GDB considers two Modula-2 variables type equivalent if:
• They are of types that have been declared equivalent via a TYPE t1 = t2 statement

Chapter 12: Using GDB with Different Languages 117

• They have been declared on the same line. (Note: This is true of the gnu Modula-2
compiler, but it may not be true of other compilers.)

As long as type checking is enabled, any attempt to combine variables whose types are
not equivalent is an error.

Range checking is done on all mathematical operations, assignment, array index bounds,
and all built-in functions and procedures.

12.4.2.7 The scope operators :: and .

There are a few subtle differences between the Modula-2 scope operator (.) and the
GDB scope operator (::). The two have similar syntax:

module . id
scope :: id

where scope is the name of a module or a procedure, module the name of a module, and id
is any declared identifier within your program, except another module.

Using the :: operator makes GDB search the scope specified by scope for the identifier
id. If it is not found in the specified scope, then GDB searches all scopes enclosing the one
specified by scope.

Using the . operator makes GDB search the current scope for the identifier specified by
id that was imported from the definition module specified by module. With this operator,
it is an error if the identifier id was not imported from definition module module, or if id is
not an identifier in module.

12.4.2.8 GDB and Modula-2

Some GDB commands have little use when debugging Modula-2 programs. Five subcom-
mands of set print and show print apply specifically to C and C++: ‘vtbl’, ‘demangle’,
‘asm-demangle’, ‘object’, and ‘union’. The first four apply to C++, and the last to the C
union type, which has no direct analogue in Modula-2.

The @ operator (see Section 8.1 [Expressions], page 63), while available with any lan-
guage, is not useful with Modula-2. Its intent is to aid the debugging of dynamic arrays,
which cannot be created in Modula-2 as they can in C or C++. However, because an address
can be specified by an integral constant, the construct ‘{type}adrexp’ is still useful.

In GDB scripts, the Modula-2 inequality operator # is interpreted as the beginning of a
comment. Use <> instead.

118 Debugging with GDB

Chapter 13: Examining the Symbol Table 119

13 Examining the Symbol Table

The commands described in this chapter allow you to inquire about the symbols (names
of variables, functions and types) defined in your program. This information is inherent in
the text of your program and does not change as your program executes. GDB finds it in
your program’s symbol table, in the file indicated when you started GDB (see Section 2.1.1
[Choosing files], page 12), or by one of the file-management commands (see Section 15.1
[Commands to specify files], page 127).

Occasionally, you may need to refer to symbols that contain unusual characters, which
GDB ordinarily treats as word delimiters. The most frequent case is in referring to static
variables in other source files (see Section 8.2 [Program variables], page 64). File names are
recorded in object files as debugging symbols, but GDB would ordinarily parse a typical
file name, like ‘foo.c’, as the three words ‘foo’ ‘.’ ‘c’. To allow GDB to recognize ‘foo.c’
as a single symbol, enclose it in single quotes; for example,

p ’foo.c’::x

looks up the value of x in the scope of the file ‘foo.c’.

info address symbol
Describe where the data for symbol is stored. For a register variable, this says
which register it is kept in. For a non-register local variable, this prints the
stack-frame offset at which the variable is always stored.
Note the contrast with ‘print &symbol’, which does not work at all for a register
variable, and for a stack local variable prints the exact address of the current
instantiation of the variable.

info symbol addr
Print the name of a symbol which is stored at the address addr. If no symbol
is stored exactly at addr, GDB prints the nearest symbol and an offset from it:

(gdb) info symbol 0x54320
_initialize_vx + 396 in section .text

This is the opposite of the info address command. You can use it to find out
the name of a variable or a function given its address.

whatis expr
Print the data type of expression expr. expr is not actually evaluated, and any
side-effecting operations (such as assignments or function calls) inside it do not
take place. See Section 8.1 [Expressions], page 63.

whatis Print the data type of $, the last value in the value history.

ptype typename
Print a description of data type typename. typename may be the name of a
type, or for C code it may have the form ‘class class-name’, ‘struct struct-
tag ’, ‘union union-tag ’ or ‘enum enum-tag ’.

ptype expr
ptype Print a description of the type of expression expr. ptype differs from whatis

by printing a detailed description, instead of just the name of the type.
For example, for this variable declaration:

120 Debugging with GDB

struct complex {double real; double imag;} v;

the two commands give this output:
(gdb) whatis v
type = struct complex
(gdb) ptype v
type = struct complex {

double real;
double imag;

}

As with whatis, using ptype without an argument refers to the type of $, the
last value in the value history.

info types regexp
info types

Print a brief description of all types whose names match regexp (or all types in
your program, if you supply no argument). Each complete typename is matched
as though it were a complete line; thus, ‘i type value’ gives information on
all types in your program whose names include the string value, but ‘i type
^value$’ gives information only on types whose complete name is value.
This command differs from ptype in two ways: first, like whatis, it does not
print a detailed description; second, it lists all source files where a type is
defined.

info scope addr
List all the variables local to a particular scope. This command accepts a
location—a function name, a source line, or an address preceded by a ‘*’, and
prints all the variables local to the scope defined by that location. For example:

(gdb) info scope command line handler
Scope for command_line_handler:
Symbol rl is an argument at stack/frame offset 8, length 4.
Symbol linebuffer is in static storage at address 0x150a18, length 4.
Symbol linelength is in static storage at address 0x150a1c, length 4.
Symbol p is a local variable in register $esi, length 4.
Symbol p1 is a local variable in register $ebx, length 4.
Symbol nline is a local variable in register $edx, length 4.
Symbol repeat is a local variable at frame offset -8, length 4.

This command is especially useful for determining what data to collect during
a trace experiment, see Section 10.1.4 [Tracepoint Actions], page 89.

info source
Show information about the current source file—that is, the source file for the
function containing the current point of execution:
• the name of the source file, and the directory containing it,
• the directory it was compiled in,
• its length, in lines,
• which programming language it is written in,
• whether the executable includes debugging information for that file, and if

so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and

Chapter 13: Examining the Symbol Table 121

• whether the debugging information includes information about preproces-
sor macros.

info sources
Print the names of all source files in your program for which there is debugging
information, organized into two lists: files whose symbols have already been
read, and files whose symbols will be read when needed.

info functions
Print the names and data types of all defined functions.

info functions regexp
Print the names and data types of all defined functions whose names contain a
match for regular expression regexp. Thus, ‘info fun step’ finds all functions
whose names include step; ‘info fun ^step’ finds those whose names start
with step. If a function name contains characters that conflict with the regular
expression language (eg. ‘operator*()’), they may be quoted with a backslash.

info variables
Print the names and data types of all variables that are declared outside of
functions (i.e. excluding local variables).

info variables regexp
Print the names and data types of all variables (except for local variables) whose
names contain a match for regular expression regexp.
Some systems allow individual object files that make up your program to be
replaced without stopping and restarting your program. For example, in Vx-
Works you can simply recompile a defective object file and keep on running.
If you are running on one of these systems, you can allow GDB to reload the
symbols for automatically relinked modules:

set symbol-reloading on
Replace symbol definitions for the corresponding source file when
an object file with a particular name is seen again.

set symbol-reloading off
Do not replace symbol definitions when encountering object files of
the same name more than once. This is the default state; if you
are not running on a system that permits automatic relinking of
modules, you should leave symbol-reloading off, since otherwise
GDB may discard symbols when linking large programs, that may
contain several modules (from different directories or libraries) with
the same name.

show symbol-reloading
Show the current on or off setting.

set opaque-type-resolution on
Tell GDB to resolve opaque types. An opaque type is a type declared as a
pointer to a struct, class, or union—for example, struct MyType *—that

122 Debugging with GDB

is used in one source file although the full declaration of struct MyType is in
another source file. The default is on.
A change in the setting of this subcommand will not take effect until the next
time symbols for a file are loaded.

set opaque-type-resolution off
Tell GDB not to resolve opaque types. In this case, the type is printed as
follows:

{<no data fields>}

show opaque-type-resolution
Show whether opaque types are resolved or not.

maint print symbols filename
maint print psymbols filename
maint print msymbols filename

Write a dump of debugging symbol data into the file filename. These com-
mands are used to debug the GDB symbol-reading code. Only symbols with
debugging data are included. If you use ‘maint print symbols’, GDB includes
all the symbols for which it has already collected full details: that is, filename
reflects symbols for only those files whose symbols GDB has read. You can
use the command info sources to find out which files these are. If you use
‘maint print psymbols’ instead, the dump shows information about symbols
that GDB only knows partially—that is, symbols defined in files that GDB
has skimmed, but not yet read completely. Finally, ‘maint print msymbols’
dumps just the minimal symbol information required for each object file from
which GDB has read some symbols. See Section 15.1 [Commands to specify
files], page 127, for a discussion of how GDB reads symbols (in the description
of symbol-file).

Chapter 14: Altering Execution 123

14 Altering Execution

Once you think you have found an error in your program, you might want to find out
for certain whether correcting the apparent error would lead to correct results in the rest
of the run. You can find the answer by experiment, using the GDB features for altering
execution of the program.

For example, you can store new values into variables or memory locations, give your pro-
gram a signal, restart it at a different address, or even return prematurely from a function.

14.1 Assignment to variables

To alter the value of a variable, evaluate an assignment expression. See Section 8.1
[Expressions], page 63. For example,

print x=4

stores the value 4 into the variable x, and then prints the value of the assignment expression
(which is 4). See Chapter 12 [Using GDB with Different Languages], page 103, for more
information on operators in supported languages.

If you are not interested in seeing the value of the assignment, use the set command
instead of the print command. set is really the same as print except that the expression’s
value is not printed and is not put in the value history (see Section 8.8 [Value history],
page 75). The expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears identical to a
set subcommand, use the set variable command instead of just set. This command is
identical to set except for its lack of subcommands. For example, if your program has a
variable width, you get an error if you try to set a new value with just ‘set width=13’,
because GDB has the command set width:

(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.

The invalid expression, of course, is ‘=47’. In order to actually set the program’s variable
width, use

(gdb) set var width=47

Because the set command has many subcommands that can conflict with the names of
program variables, it is a good idea to use the set variable command instead of just set.
For example, if your program has a variable g, you run into problems if you try to set a new
value with just ‘set g=4’, because GDB has the command set gnutarget, abbreviated set
g:

124 Debugging with GDB

(gdb) whatis g
type = double
(gdb) p g
$1 = 1
(gdb) set g=4
(gdb) p g
$2 = 1
(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/smith/cc_progs/a.out
"/home/smith/cc_progs/a.out": can’t open to read symbols:

Invalid bfd target.
(gdb) show g
The current BFD target is "=4".

The program variable g did not change, and you silently set the gnutarget to an invalid
value. In order to set the variable g, use

(gdb) set var g=4

GDB allows more implicit conversions in assignments than C; you can freely store an
integer value into a pointer variable or vice versa, and you can convert any structure to any
other structure that is the same length or shorter.

To store values into arbitrary places in memory, use the ‘{...}’ construct to generate a
value of specified type at a specified address (see Section 8.1 [Expressions], page 63). For
example, {int}0x83040 refers to memory location 0x83040 as an integer (which implies a
certain size and representation in memory), and

set {int}0x83040 = 4

stores the value 4 into that memory location.

14.2 Continuing at a different address

Ordinarily, when you continue your program, you do so at the place where it stopped,
with the continue command. You can instead continue at an address of your own choosing,
with the following commands:

jump linespec
Resume execution at line linespec. Execution stops again immediately if there
is a breakpoint there. See Section 7.1 [Printing source lines], page 57, for a
description of the different forms of linespec. It is common practice to use
the tbreak command in conjunction with jump. See Section 5.1.1 [Setting
breakpoints], page 34.

The jump command does not change the current stack frame, or the stack
pointer, or the contents of any memory location or any register other than the
program counter. If line linespec is in a different function from the one cur-
rently executing, the results may be bizarre if the two functions expect different
patterns of arguments or of local variables. For this reason, the jump command

Chapter 14: Altering Execution 125

requests confirmation if the specified line is not in the function currently exe-
cuting. However, even bizarre results are predictable if you are well acquainted
with the machine-language code of your program.

jump *address
Resume execution at the instruction at address address.

On many systems, you can get much the same effect as the jump command by storing
a new value into the register $pc. The difference is that this does not start your program
running; it only changes the address of where it will run when you continue. For example,

set $pc = 0x485

makes the next continue command or stepping command execute at address 0x485, rather
than at the address where your program stopped. See Section 5.2 [Continuing and stepping],
page 45.

The most common occasion to use the jump command is to back up—perhaps with more
breakpoints set—over a portion of a program that has already executed, in order to examine
its execution in more detail.

14.3 Giving your program a signal

signal signal
Resume execution where your program stopped, but immediately give it the
signal signal. signal can be the name or the number of a signal. For example,
on many systems signal 2 and signal SIGINT are both ways of sending an
interrupt signal.
Alternatively, if signal is zero, continue execution without giving a signal. This
is useful when your program stopped on account of a signal and would ordinary
see the signal when resumed with the continue command; ‘signal 0’ causes it
to resume without a signal.
signal does not repeat when you press 〈RET〉 a second time after executing the
command.

Invoking the signal command is not the same as invoking the kill utility from the shell.
Sending a signal with kill causes GDB to decide what to do with the signal depending on
the signal handling tables (see Section 5.3 [Signals], page 48). The signal command passes
the signal directly to your program.

14.4 Returning from a function

return
return expression

You can cancel execution of a function call with the return command. If you
give an expression argument, its value is used as the function’s return value.

When you use return, GDB discards the selected stack frame (and all frames within
it). You can think of this as making the discarded frame return prematurely. If you wish
to specify a value to be returned, give that value as the argument to return.

126 Debugging with GDB

This pops the selected stack frame (see Section 6.3 [Selecting a frame], page 55), and any
other frames inside of it, leaving its caller as the innermost remaining frame. That frame
becomes selected. The specified value is stored in the registers used for returning values of
functions.

The return command does not resume execution; it leaves the program stopped in the
state that would exist if the function had just returned. In contrast, the finish command
(see Section 5.2 [Continuing and stepping], page 45) resumes execution until the selected
stack frame returns naturally.

14.5 Calling program functions

call expr Evaluate the expression expr without displaying void returned values.

You can use this variant of the print command if you want to execute a function from
your program, but without cluttering the output with void returned values. If the result
is not void, it is printed and saved in the value history.

14.6 Patching programs

By default, GDB opens the file containing your program’s executable code (or the core-
file) read-only. This prevents accidental alterations to machine code; but it also prevents
you from intentionally patching your program’s binary.

If you’d like to be able to patch the binary, you can specify that explicitly with the set
write command. For example, you might want to turn on internal debugging flags, or even
to make emergency repairs.

set write on
set write off

If you specify ‘set write on’, GDB opens executable and core files for both
reading and writing; if you specify ‘set write off’ (the default), GDB opens
them read-only.
If you have already loaded a file, you must load it again (using the exec-file
or core-file command) after changing set write, for your new setting to take
effect.

show write
Display whether executable files and core files are opened for writing as well as
reading.

Chapter 15: GDB Files 127

15 GDB Files

GDB needs to know the file name of the program to be debugged, both in order to read
its symbol table and in order to start your program. To debug a core dump of a previous
run, you must also tell GDB the name of the core dump file.

15.1 Commands to specify files

You may want to specify executable and core dump file names. The usual way to do
this is at start-up time, using the arguments to GDB’s start-up commands (see Chapter 2
[Getting In and Out of GDB], page 11).

Occasionally it is necessary to change to a different file during a GDB session. Or you
may run GDB and forget to specify a file you want to use. In these situations the GDB
commands to specify new files are useful.

file filename
Use filename as the program to be debugged. It is read for its symbols and for
the contents of pure memory. It is also the program executed when you use the
run command. If you do not specify a directory and the file is not found in the
GDB working directory, GDB uses the environment variable PATH as a list of
directories to search, just as the shell does when looking for a program to run.
You can change the value of this variable, for both GDB and your program,
using the path command.
On systems with memory-mapped files, an auxiliary file named ‘filename.syms’
may hold symbol table information for filename. If so, GDB maps in the symbol
table from ‘filename.syms’, starting up more quickly. See the descriptions of the
file options ‘-mapped’ and ‘-readnow’ (available on the command line, and with
the commands file, symbol-file, or add-symbol-file, described below), for
more information.

file file with no argument makes GDB discard any information it has on both
executable file and the symbol table.

exec-file [filename]
Specify that the program to be run (but not the symbol table) is found in file-
name. GDB searches the environment variable PATH if necessary to locate your
program. Omitting filename means to discard information on the executable
file.

symbol-file [filename]
Read symbol table information from file filename. PATH is searched when nec-
essary. Use the file command to get both symbol table and program to run
from the same file.
symbol-file with no argument clears out GDB information on your program’s
symbol table.
The symbol-file command causes GDB to forget the contents of its conve-
nience variables, the value history, and all breakpoints and auto-display expres-
sions. This is because they may contain pointers to the internal data recording

128 Debugging with GDB

symbols and data types, which are part of the old symbol table data being
discarded inside GDB.

symbol-file does not repeat if you press 〈RET〉 again after executing it once.

When GDB is configured for a particular environment, it understands debug-
ging information in whatever format is the standard generated for that envi-
ronment; you may use either a gnu compiler, or other compilers that adhere
to the local conventions. Best results are usually obtained from gnu compilers;
for example, using gcc you can generate debugging information for optimized
code.

For most kinds of object files, with the exception of old SVR3 systems using
COFF, the symbol-file command does not normally read the symbol table in
full right away. Instead, it scans the symbol table quickly to find which source
files and which symbols are present. The details are read later, one source file
at a time, as they are needed.

The purpose of this two-stage reading strategy is to make GDB start up faster.
For the most part, it is invisible except for occasional pauses while the symbol
table details for a particular source file are being read. (The set verbose
command can turn these pauses into messages if desired. See Section 19.6
[Optional warnings and messages], page 168.)

We have not implemented the two-stage strategy for COFF yet. When the
symbol table is stored in COFF format, symbol-file reads the symbol table
data in full right away. Note that “stabs-in-COFF” still does the two-stage
strategy, since the debug info is actually in stabs format.

symbol-file filename [-readnow] [-mapped]
file filename [-readnow] [-mapped]

You can override the GDB two-stage strategy for reading symbol tables by
using the ‘-readnow’ option with any of the commands that load symbol table
information, if you want to be sure GDB has the entire symbol table available.

If memory-mapped files are available on your system through the mmap system
call, you can use another option, ‘-mapped’, to cause GDB to write the symbols
for your program into a reusable file. Future GDB debugging sessions map
in symbol information from this auxiliary symbol file (if the program has not
changed), rather than spending time reading the symbol table from the exe-
cutable program. Using the ‘-mapped’ option has the same effect as starting
GDB with the ‘-mapped’ command-line option.

You can use both options together, to make sure the auxiliary symbol file has
all the symbol information for your program.

The auxiliary symbol file for a program called myprog is called ‘myprog.syms’.
Once this file exists (so long as it is newer than the corresponding executable),
GDB always attempts to use it when you debug myprog ; no special options or
commands are needed.

The ‘.syms’ file is specific to the host machine where you run GDB. It holds
an exact image of the internal GDB symbol table. It cannot be shared across
multiple host platforms.

Chapter 15: GDB Files 129

core-file [filename]
Specify the whereabouts of a core dump file to be used as the “contents of
memory”. Traditionally, core files contain only some parts of the address space
of the process that generated them; GDB can access the executable file itself
for other parts.
core-file with no argument specifies that no core file is to be used.
Note that the core file is ignored when your program is actually running under
GDB. So, if you have been running your program and you wish to debug a
core file instead, you must kill the subprocess in which the program is running.
To do this, use the kill command (see Section 4.8 [Killing the child process],
page 28).

add-symbol-file filename address
add-symbol-file filename address [-readnow] [-mapped]
add-symbol-file filename -ssection address ...

The add-symbol-file command reads additional symbol table information
from the file filename. You would use this command when filename has been
dynamically loaded (by some other means) into the program that is running.
address should be the memory address at which the file has been loaded; GDB
cannot figure this out for itself. You can additionally specify an arbitrary
number of ‘-ssection address’ pairs, to give an explicit section name and base
address for that section. You can specify any address as an expression.
The symbol table of the file filename is added to the symbol table originally read
with the symbol-file command. You can use the add-symbol-file command
any number of times; the new symbol data thus read keeps adding to the old.
To discard all old symbol data instead, use the symbol-file command without
any arguments.
Although filename is typically a shared library file, an executable file, or some
other object file which has been fully relocated for loading into a process, you
can also load symbolic information from relocatable ‘.o’ files, as long as:
• the file’s symbolic information refers only to linker symbols defined in that

file, not to symbols defined by other object files,
• every section the file’s symbolic information refers to has actually been

loaded into the inferior, as it appears in the file, and
• you can determine the address at which every section was loaded, and

provide these to the add-symbol-file command.

Some embedded operating systems, like Sun Chorus and VxWorks, can load
relocatable files into an already running program; such systems typically make
the requirements above easy to meet. However, it’s important to recognize that
many native systems use complex link procedures (.linkonce section factoring
and C++ constructor table assembly, for example) that make the requirements
difficult to meet. In general, one cannot assume that using add-symbol-file
to read a relocatable object file’s symbolic information will have the same effect
as linking the relocatable object file into the program in the normal way.
add-symbol-file does not repeat if you press 〈RET〉 after using it.

130 Debugging with GDB

You can use the ‘-mapped’ and ‘-readnow’ options just as with the symbol-
file command, to change how GDB manages the symbol table information for
filename.

add-shared-symbol-file
The add-shared-symbol-file command can be used only under Harris’ CXUX
operating system for the Motorola 88k. GDB automatically looks for shared
libraries, however if GDB does not find yours, you can run add-shared-symbol-
file. It takes no arguments.

section The section command changes the base address of section SECTION of the
exec file to ADDR. This can be used if the exec file does not contain section
addresses, (such as in the a.out format), or when the addresses specified in the
file itself are wrong. Each section must be changed separately. The info files
command, described below, lists all the sections and their addresses.

info files
info target

info files and info target are synonymous; both print the current target
(see Chapter 16 [Specifying a Debugging Target], page 135), including the
names of the executable and core dump files currently in use by GDB, and
the files from which symbols were loaded. The command help target lists all
possible targets rather than current ones.

maint info sections
Another command that can give you extra information about program sections
is maint info sections. In addition to the section information displayed by
info files, this command displays the flags and file offset of each section in
the executable and core dump files. In addition, maint info sections provides
the following command options (which may be arbitrarily combined):

ALLOBJ Display sections for all loaded object files, including shared li-
braries.

sections Display info only for named sections.

section-flags
Display info only for sections for which section-flags are true. The
section flags that GDB currently knows about are:

ALLOC Section will have space allocated in the process when
loaded. Set for all sections except those containing de-
bug information.

LOAD Section will be loaded from the file into the child pro-
cess memory. Set for pre-initialized code and data,
clear for .bss sections.

RELOC Section needs to be relocated before loading.

READONLY Section cannot be modified by the child process.

CODE Section contains executable code only.

Chapter 15: GDB Files 131

DATA Section contains data only (no executable code).

ROM Section will reside in ROM.

CONSTRUCTOR
Section contains data for constructor/destructor lists.

HAS_CONTENTS
Section is not empty.

NEVER_LOAD
An instruction to the linker to not output the section.

COFF_SHARED_LIBRARY
A notification to the linker that the section contains
COFF shared library information.

IS_COMMON
Section contains common symbols.

set trust-readonly-sections on
Tell GDB that readonly sections in your object file really are read-only (i.e.
that their contents will not change). In that case, GDB can fetch values from
these sections out of the object file, rather than from the target program. For
some targets (notably embedded ones), this can be a significant enhancement
to debugging performance.
The default is off.

set trust-readonly-sections off
Tell GDB not to trust readonly sections. This means that the contents of
the section might change while the program is running, and must therefore be
fetched from the target when needed.

All file-specifying commands allow both absolute and relative file names as arguments.
GDB always converts the file name to an absolute file name and remembers it that way.

GDB supports HP-UX, SunOS, SVr4, Irix 5, and IBM RS/6000 shared libraries.
GDB automatically loads symbol definitions from shared libraries when you use the run

command, or when you examine a core file. (Before you issue the run command, GDB
does not understand references to a function in a shared library, however—unless you are
debugging a core file).

On HP-UX, if the program loads a library explicitly, GDB automatically loads the
symbols at the time of the shl_load call.

There are times, however, when you may wish to not automatically load symbol defini-
tions from shared libraries, such as when they are particularly large or there are many of
them.

To control the automatic loading of shared library symbols, use the commands:

set auto-solib-add mode
If mode is on, symbols from all shared object libraries will be loaded auto-
matically when the inferior begins execution, you attach to an independently

132 Debugging with GDB

started inferior, or when the dynamic linker informs GDB that a new library
has been loaded. If mode is off, symbols must be loaded manually, using the
sharedlibrary command. The default value is on.

show auto-solib-add
Display the current autoloading mode.

To explicitly load shared library symbols, use the sharedlibrary command:

info share
info sharedlibrary

Print the names of the shared libraries which are currently loaded.

sharedlibrary regex
share regex

Load shared object library symbols for files matching a Unix regular expression.
As with files loaded automatically, it only loads shared libraries required by your
program for a core file or after typing run. If regex is omitted all shared libraries
required by your program are loaded.

On some systems, such as HP-UX systems, GDB supports autoloading shared library
symbols until a limiting threshold size is reached. This provides the benefit of allowing au-
toloading to remain on by default, but avoids autoloading excessively large shared libraries,
up to a threshold that is initially set, but which you can modify if you wish.

Beyond that threshold, symbols from shared libraries must be explicitly loaded. To load
these symbols, use the command sharedlibrary filename. The base address of the shared
library is determined automatically by GDB and need not be specified.

To display or set the threshold, use the commands:

set auto-solib-limit threshold
Set the autoloading size threshold, in an integral number of megabytes. If
threshold is nonzero and shared library autoloading is enabled, symbols from
all shared object libraries will be loaded until the total size of the loaded shared
library symbols exceeds this threshold. Otherwise, symbols must be loaded
manually, using the sharedlibrary command. The default threshold is 100
(i.e. 100 Mb).

show auto-solib-limit
Display the current autoloading size threshold, in megabytes.

15.2 Errors reading symbol files

While reading a symbol file, GDB occasionally encounters problems, such as symbol
types it does not recognize, or known bugs in compiler output. By default, GDB does not
notify you of such problems, since they are relatively common and primarily of interest to
people debugging compilers. If you are interested in seeing information about ill-constructed
symbol tables, you can either ask GDB to print only one message about each such type of
problem, no matter how many times the problem occurs; or you can ask GDB to print more
messages, to see how many times the problems occur, with the set complaints command
(see Section 19.6 [Optional warnings and messages], page 168).

Chapter 15: GDB Files 133

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol
The symbol information shows where symbol scopes begin and end (such as at
the start of a function or a block of statements). This error indicates that an
inner scope block is not fully contained in its outer scope blocks.
GDB circumvents the problem by treating the inner block as if it had the
same scope as the outer block. In the error message, symbol may be shown as
“(don’t know)” if the outer block is not a function.

block at address out of order
The symbol information for symbol scope blocks should occur in order of in-
creasing addresses. This error indicates that it does not do so.
GDB does not circumvent this problem, and has trouble locating symbols in
the source file whose symbols it is reading. (You can often determine what
source file is affected by specifying set verbose on. See Section 19.6 [Optional
warnings and messages], page 168.)

bad block start address patched
The symbol information for a symbol scope block has a start address smaller
than the address of the preceding source line. This is known to occur in the
SunOS 4.1.1 (and earlier) C compiler.
GDB circumvents the problem by treating the symbol scope block as starting
on the previous source line.

bad string table offset in symbol n
Symbol number n contains a pointer into the string table which is larger than
the size of the string table.
GDB circumvents the problem by considering the symbol to have the name
foo, which may cause other problems if many symbols end up with this name.

unknown symbol type 0xnn
The symbol information contains new data types that GDB does not yet know
how to read. 0xnn is the symbol type of the uncomprehended information, in
hexadecimal.
GDB circumvents the error by ignoring this symbol information. This usually
allows you to debug your program, though certain symbols are not accessible. If
you encounter such a problem and feel like debugging it, you can debug gdb with
itself, breakpoint on complain, then go up to the function read_dbx_symtab
and examine *bufp to see the symbol.

stub type has NULL name
GDB could not find the full definition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got...
The symbol information for a C++ member function is missing some information
that recent versions of the compiler should have output for it.

info mismatch between compiler and debugger
GDB could not parse a type specification output by the compiler.

134 Debugging with GDB

Chapter 16: Specifying a Debugging Target 135

16 Specifying a Debugging Target

A target is the execution environment occupied by your program.

Often, GDB runs in the same host environment as your program; in that case, the
debugging target is specified as a side effect when you use the file or core commands.
When you need more flexibility—for example, running GDB on a physically separate host,
or controlling a standalone system over a serial port or a realtime system over a TCP/IP
connection—you can use the target command to specify one of the target types configured
for GDB (see Section 16.2 [Commands for managing targets], page 135).

16.1 Active targets

There are three classes of targets: processes, core files, and executable files. GDB can
work concurrently on up to three active targets, one in each class. This allows you to (for
example) start a process and inspect its activity without abandoning your work on a core
file.

For example, if you execute ‘gdb a.out’, then the executable file a.out is the only active
target. If you designate a core file as well—presumably from a prior run that crashed and
coredumped—then GDB has two active targets and uses them in tandem, looking first in
the corefile target, then in the executable file, to satisfy requests for memory addresses.
(Typically, these two classes of target are complementary, since core files contain only a
program’s read-write memory—variables and so on—plus machine status, while executable
files contain only the program text and initialized data.)

When you type run, your executable file becomes an active process target as well. When
a process target is active, all GDB commands requesting memory addresses refer to that
target; addresses in an active core file or executable file target are obscured while the process
target is active.

Use the core-file and exec-file commands to select a new core file or executable
target (see Section 15.1 [Commands to specify files], page 127). To specify as a target a
process that is already running, use the attach command (see Section 4.7 [Debugging an
already-running process], page 27).

16.2 Commands for managing targets

target type parameters
Connects the GDB host environment to a target machine or process. A target
is typically a protocol for talking to debugging facilities. You use the argument
type to specify the type or protocol of the target machine.

Further parameters are interpreted by the target protocol, but typically include
things like device names or host names to connect with, process numbers, and
baud rates.

The target command does not repeat if you press 〈RET〉 again after executing
the command.

136 Debugging with GDB

help target
Displays the names of all targets available. To display targets currently selected,
use either info target or info files (see Section 15.1 [Commands to specify
files], page 127).

help target name
Describe a particular target, including any parameters necessary to select it.

set gnutarget args
GDB uses its own library BFD to read your files. GDB knows whether it is
reading an executable, a core, or a .o file; however, you can specify the file
format with the set gnutarget command. Unlike most target commands,
with gnutarget the target refers to a program, not a machine.

Warning: To specify a file format with set gnutarget, you must
know the actual BFD name.

See Section 15.1 [Commands to specify files], page 127.

show gnutarget
Use the show gnutarget command to display what file format gnutarget is set
to read. If you have not set gnutarget, GDB will determine the file format for
each file automatically, and show gnutarget displays ‘The current BDF target
is "auto"’.

Here are some common targets (available, or not, depending on the GDB configuration):

target exec program
An executable file. ‘target exec program’ is the same as ‘exec-file program’.

target core filename
A core dump file. ‘target core filename’ is the same as ‘core-file filename’.

target remote dev
Remote serial target in GDB-specific protocol. The argument dev specifies
what serial device to use for the connection (e.g. ‘/dev/ttya’). See Section 16.4
[Remote debugging], page 137. target remote supports the load command.
This is only useful if you have some other way of getting the stub to the target
system, and you can put it somewhere in memory where it won’t get clobbered
by the download.

target sim
Builtin CPU simulator. GDB includes simulators for most architectures. In
general,

target sim
load
run

works; however, you cannot assume that a specific memory map, device drivers,
or even basic I/O is available, although some simulators do provide these. For
info about any processor-specific simulator details, see the appropriate section
in Section 18.3 [Embedded Processors], page 152.

Some configurations may include these targets as well:

Chapter 16: Specifying a Debugging Target 137

target nrom dev
NetROM ROM emulator. This target only supports downloading.

Different targets are available on different configurations of GDB; your configuration
may have more or fewer targets.

Many remote targets require you to download the executable’s code once you’ve success-
fully established a connection.

load filename
Depending on what remote debugging facilities are configured into GDB, the
load command may be available. Where it exists, it is meant to make filename
(an executable) available for debugging on the remote system—by downloading,
or dynamic linking, for example. load also records the filename symbol table
in GDB, like the add-symbol-file command.
If your GDB does not have a load command, attempting to execute it gets the
error message “You can’t do that when your target is ...”
The file is loaded at whatever address is specified in the executable. For some
object file formats, you can specify the load address when you link the program;
for other formats, like a.out, the object file format specifies a fixed address.
load does not repeat if you press 〈RET〉 again after using it.

16.3 Choosing target byte order

Some types of processors, such as the MIPS, PowerPC, and Hitachi SH, offer the ability
to run either big-endian or little-endian byte orders. Usually the executable or symbol will
include a bit to designate the endian-ness, and you will not need to worry about which to
use. However, you may still find it useful to adjust GDB’s idea of processor endian-ness
manually.

set endian big
Instruct GDB to assume the target is big-endian.

set endian little
Instruct GDB to assume the target is little-endian.

set endian auto
Instruct GDB to use the byte order associated with the executable.

show endian
Display GDB’s current idea of the target byte order.

Note that these commands merely adjust interpretation of symbolic data on the host,
and that they have absolutely no effect on the target system.

16.4 Remote debugging

If you are trying to debug a program running on a machine that cannot run GDB in
the usual way, it is often useful to use remote debugging. For example, you might use

138 Debugging with GDB

remote debugging on an operating system kernel, or on a small system which does not have
a general purpose operating system powerful enough to run a full-featured debugger.

Some configurations of GDB have special serial or TCP/IP interfaces to make this work
with particular debugging targets. In addition, GDB comes with a generic serial protocol
(specific to GDB, but not specific to any particular target system) which you can use if
you write the remote stubs—the code that runs on the remote system to communicate with
GDB.

Other remote targets may be available in your configuration of GDB; use help target
to list them.

16.5 Kernel Object Display

Some targets support kernel object display. Using this facility, GDB communicates
specially with the underlying operating system and can display information about operating
system-level objects such as mutexes and other synchronization objects. Exactly which
objects can be displayed is determined on a per-OS basis.

Use the set os command to set the operating system. This tells GDB which kernel
object display module to initialize:

(gdb) set os cisco

If set os succeeds, GDB will display some information about the operating system, and
will create a new info command which can be used to query the target. The info command
is named after the operating system:

(gdb) info cisco
List of Cisco Kernel Objects
Object Description
any Any and all objects

Further subcommands can be used to query about particular objects known by the
kernel.

There is currently no way to determine whether a given operating system is supported
other than to try it.

Chapter 17: Debugging remote programs 139

17 Debugging remote programs

17.1 Using the gdbserver program

gdbserver is a control program for Unix-like systems, which allows you to connect
your program with a remote GDB via target remote—but without linking in the usual
debugging stub.

gdbserver is not a complete replacement for the debugging stubs, because it requires
essentially the same operating-system facilities that GDB itself does. In fact, a system that
can run gdbserver to connect to a remote GDB could also run GDB locally! gdbserver
is sometimes useful nevertheless, because it is a much smaller program than GDB itself. It
is also easier to port than all of GDB, so you may be able to get started more quickly on
a new system by using gdbserver. Finally, if you develop code for real-time systems, you
may find that the tradeoffs involved in real-time operation make it more convenient to do
as much development work as possible on another system, for example by cross-compiling.
You can use gdbserver to make a similar choice for debugging.

GDB and gdbserver communicate via either a serial line or a TCP connection, using
the standard GDB remote serial protocol.

On the target machine,
you need to have a copy of the program you want to debug. gdbserver does
not need your program’s symbol table, so you can strip the program if necessary
to save space. GDB on the host system does all the symbol handling.
To use the server, you must tell it how to communicate with GDB; the name
of your program; and the arguments for your program. The usual syntax is:

target> gdbserver comm program [args ...]

comm is either a device name (to use a serial line) or a TCP hostname and
portnumber. For example, to debug Emacs with the argument ‘foo.txt’ and
communicate with GDB over the serial port ‘/dev/com1’:

target> gdbserver /dev/com1 emacs foo.txt

gdbserver waits passively for the host GDB to communicate with it.
To use a TCP connection instead of a serial line:

target> gdbserver host:2345 emacs foo.txt

The only difference from the previous example is the first argument, specifying
that you are communicating with the host GDB via TCP. The ‘host:2345’
argument means that gdbserver is to expect a TCP connection from machine
‘host’ to local TCP port 2345. (Currently, the ‘host’ part is ignored.) You
can choose any number you want for the port number as long as it does not
conflict with any TCP ports already in use on the target system (for example,
23 is reserved for telnet).1 You must use the same port number with the host
GDB target remote command.
On some targets, gdbserver can also attach to running programs. This is
accomplished via the --attach argument. The syntax is:

1 If you choose a port number that conflicts with another service, gdbserver prints an error message and
exits.

140 Debugging with GDB

target> gdbserver comm --attach pid

pid is the process ID of a currently running process. It isn’t necessary to point
gdbserver at a binary for the running process.

On the GDB host machine,
you need an unstripped copy of your program, since GDB needs symbols and
debugging information. Start up GDB as usual, using the name of the local
copy of your program as the first argument. (You may also need the ‘--baud’
option if the serial line is running at anything other than 9600 bps.) After that,
use target remote to establish communications with gdbserver. Its argument
is either a device name (usually a serial device, like ‘/dev/ttyb’), or a TCP
port descriptor in the form host:PORT. For example:

(gdb) target remote /dev/ttyb

communicates with the server via serial line ‘/dev/ttyb’, and
(gdb) target remote the-target:2345

communicates via a TCP connection to port 2345 on host ‘the-target’. For
TCP connections, you must start up gdbserver prior to using the target
remote command. Otherwise you may get an error whose text depends on the
host system, but which usually looks something like ‘Connection refused’.

17.2 Using the gdbserve.nlm program

gdbserve.nlm is a control program for NetWare systems, which allows you to connect
your program with a remote GDB via target remote.

GDB and gdbserve.nlm communicate via a serial line, using the standard GDB remote
serial protocol.

On the target machine,
you need to have a copy of the program you want to debug. gdbserve.nlm
does not need your program’s symbol table, so you can strip the program if
necessary to save space. GDB on the host system does all the symbol handling.
To use the server, you must tell it how to communicate with GDB; the name
of your program; and the arguments for your program. The syntax is:

load gdbserve [BOARD=board] [PORT=port]
[BAUD=baud] program [args ...]

board and port specify the serial line; baud specifies the baud rate used by the
connection. port and node default to 0, baud defaults to 9600 bps.
For example, to debug Emacs with the argument ‘foo.txt’and communicate
with GDB over serial port number 2 or board 1 using a 19200 bps connection:

load gdbserve BOARD=1 PORT=2 BAUD=19200 emacs foo.txt

On the GDB host machine,
you need an unstripped copy of your program, since GDB needs symbols and
debugging information. Start up GDB as usual, using the name of the local copy
of your program as the first argument. (You may also need the ‘--baud’ option
if the serial line is running at anything other than 9600 bps. After that, use

Chapter 17: Debugging remote programs 141

target remote to establish communications with gdbserve.nlm. Its argument
is a device name (usually a serial device, like ‘/dev/ttyb’). For example:

(gdb) target remote /dev/ttyb

communications with the server via serial line ‘/dev/ttyb’.

17.3 Implementing a remote stub

The stub files provided with GDB implement the target side of the communication
protocol, and the GDB side is implemented in the GDB source file ‘remote.c’. Normally,
you can simply allow these subroutines to communicate, and ignore the details. (If you’re
implementing your own stub file, you can still ignore the details: start with one of the
existing stub files. ‘sparc-stub.c’ is the best organized, and therefore the easiest to read.)

To debug a program running on another machine (the debugging target machine), you
must first arrange for all the usual prerequisites for the program to run by itself. For
example, for a C program, you need:

1. A startup routine to set up the C runtime environment; these usually have a name like
‘crt0’. The startup routine may be supplied by your hardware supplier, or you may
have to write your own.

2. A C subroutine library to support your program’s subroutine calls, notably managing
input and output.

3. A way of getting your program to the other machine—for example, a download pro-
gram. These are often supplied by the hardware manufacturer, but you may have to
write your own from hardware documentation.

The next step is to arrange for your program to use a serial port to communicate with
the machine where GDB is running (the host machine). In general terms, the scheme looks
like this:

On the host,
GDB already understands how to use this protocol; when everything else is
set up, you can simply use the ‘target remote’ command (see Chapter 16
[Specifying a Debugging Target], page 135).

On the target,
you must link with your program a few special-purpose subroutines that imple-
ment the GDB remote serial protocol. The file containing these subroutines is
called a debugging stub.
On certain remote targets, you can use an auxiliary program gdbserver instead
of linking a stub into your program. See Section 17.1 [Using the gdbserver
program], page 139, for details.

The debugging stub is specific to the architecture of the remote machine; for example,
use ‘sparc-stub.c’ to debug programs on sparc boards.

These working remote stubs are distributed with GDB:

i386-stub.c
For Intel 386 and compatible architectures.

142 Debugging with GDB

m68k-stub.c
For Motorola 680x0 architectures.

sh-stub.c
For Hitachi SH architectures.

sparc-stub.c
For sparc architectures.

sparcl-stub.c
For Fujitsu sparclite architectures.

The ‘README’ file in the GDB distribution may list other recently added stubs.

17.3.1 What the stub can do for you

The debugging stub for your architecture supplies these three subroutines:

set_debug_traps
This routine arranges for handle_exception to run when your program stops.
You must call this subroutine explicitly near the beginning of your program.

handle_exception
This is the central workhorse, but your program never calls it explicitly—the
setup code arranges for handle_exception to run when a trap is triggered.
handle_exception takes control when your program stops during execution
(for example, on a breakpoint), and mediates communications with GDB on
the host machine. This is where the communications protocol is implemented;
handle_exception acts as the GDB representative on the target machine. It
begins by sending summary information on the state of your program, then con-
tinues to execute, retrieving and transmitting any information GDB needs, until
you execute a GDB command that makes your program resume; at that point,
handle_exception returns control to your own code on the target machine.

breakpoint
Use this auxiliary subroutine to make your program contain a breakpoint. De-
pending on the particular situation, this may be the only way for GDB to get
control. For instance, if your target machine has some sort of interrupt button,
you won’t need to call this; pressing the interrupt button transfers control to
handle_exception—in effect, to GDB. On some machines, simply receiving
characters on the serial port may also trigger a trap; again, in that situation,
you don’t need to call breakpoint from your own program—simply running
‘target remote’ from the host GDB session gets control.
Call breakpoint if none of these is true, or if you simply want to make certain
your program stops at a predetermined point for the start of your debugging
session.

17.3.2 What you must do for the stub

The debugging stubs that come with GDB are set up for a particular chip architecture,
but they have no information about the rest of your debugging target machine.

First of all you need to tell the stub how to communicate with the serial port.

Chapter 17: Debugging remote programs 143

int getDebugChar()
Write this subroutine to read a single character from the serial port. It may be
identical to getchar for your target system; a different name is used to allow
you to distinguish the two if you wish.

void putDebugChar(int)
Write this subroutine to write a single character to the serial port. It may be
identical to putchar for your target system; a different name is used to allow
you to distinguish the two if you wish.

If you want GDB to be able to stop your program while it is running, you need to use
an interrupt-driven serial driver, and arrange for it to stop when it receives a ^C (‘\003’,
the control-C character). That is the character which GDB uses to tell the remote system
to stop.

Getting the debugging target to return the proper status to GDB probably requires
changes to the standard stub; one quick and dirty way is to just execute a breakpoint
instruction (the “dirty” part is that GDB reports a SIGTRAP instead of a SIGINT).

Other routines you need to supply are:

void exceptionHandler (int exception number, void *exception address)
Write this function to install exception address in the exception handling ta-
bles. You need to do this because the stub does not have any way of knowing
what the exception handling tables on your target system are like (for example,
the processor’s table might be in rom, containing entries which point to a table
in ram). exception number is the exception number which should be changed;
its meaning is architecture-dependent (for example, different numbers might
represent divide by zero, misaligned access, etc). When this exception occurs,
control should be transferred directly to exception address, and the processor
state (stack, registers, and so on) should be just as it is when a processor excep-
tion occurs. So if you want to use a jump instruction to reach exception address,
it should be a simple jump, not a jump to subroutine.
For the 386, exception address should be installed as an interrupt gate so that
interrupts are masked while the handler runs. The gate should be at privilege
level 0 (the most privileged level). The sparc and 68k stubs are able to mask
interrupts themselves without help from exceptionHandler.

void flush_i_cache()
On sparc and sparclite only, write this subroutine to flush the instruction
cache, if any, on your target machine. If there is no instruction cache, this
subroutine may be a no-op.
On target machines that have instruction caches, GDB requires this function
to make certain that the state of your program is stable.

You must also make sure this library routine is available:

void *memset(void *, int, int)
This is the standard library function memset that sets an area of memory to a
known value. If you have one of the free versions of libc.a, memset can be found
there; otherwise, you must either obtain it from your hardware manufacturer,
or write your own.

144 Debugging with GDB

If you do not use the GNU C compiler, you may need other standard library subroutines
as well; this varies from one stub to another, but in general the stubs are likely to use any
of the common library subroutines which gcc generates as inline code.

17.3.3 Putting it all together

In summary, when your program is ready to debug, you must follow these steps.
1. Make sure you have defined the supporting low-level routines (see Section 17.3.2 [What

you must do for the stub], page 142):
getDebugChar, putDebugChar,
flush_i_cache, memset, exceptionHandler.

2. Insert these lines near the top of your program:
set_debug_traps();
breakpoint();

3. For the 680x0 stub only, you need to provide a variable called exceptionHook. Nor-
mally you just use:

void (*exceptionHook)() = 0;

but if before calling set_debug_traps, you set it to point to a function in your program,
that function is called when GDB continues after stopping on a trap (for example, bus
error). The function indicated by exceptionHook is called with one parameter: an int
which is the exception number.

4. Compile and link together: your program, the GDB debugging stub for your target
architecture, and the supporting subroutines.

5. Make sure you have a serial connection between your target machine and the GDB
host, and identify the serial port on the host.

6. Download your program to your target machine (or get it there by whatever means the
manufacturer provides), and start it.

7. To start remote debugging, run GDB on the host machine, and specify as an executable
file the program that is running in the remote machine. This tells GDB how to find
your program’s symbols and the contents of its pure text.

8. Establish communication using the target remote command. Its argument specifies
how to communicate with the target machine—either via a devicename attached to a
direct serial line, or a TCP or UDP port (usually to a terminal server which in turn
has a serial line to the target). For example, to use a serial line connected to the device
named ‘/dev/ttyb’:

target remote /dev/ttyb

To use a TCP connection, use an argument of the form host:port or tcp:host:port.
For example, to connect to port 2828 on a terminal server named manyfarms:

target remote manyfarms:2828

If your remote target is actually running on the same machine as your debugger session
(e.g. a simulator of your target running on the same host), you can omit the hostname.
For example, to connect to port 1234 on your local machine:

target remote :1234

Note that the colon is still required here.

Chapter 17: Debugging remote programs 145

To use a UDP connection, use an argument of the form udp:host:port. For example,
to connect to UDP port 2828 on a terminal server named manyfarms:

target remote udp:manyfarms:2828

When using a UDP connection for remote debugging, you should keep in mind that
the ‘U’ stands for “Unreliable”. UDP can silently drop packets on busy or unreliable
networks, which will cause havoc with your debugging session.

Now you can use all the usual commands to examine and change data and to step and
continue the remote program.

To resume the remote program and stop debugging it, use the detach command.
Whenever GDB is waiting for the remote program, if you type the interrupt character

(often 〈C-C〉), GDB attempts to stop the program. This may or may not succeed, depending
in part on the hardware and the serial drivers the remote system uses. If you type the
interrupt character once again, GDB displays this prompt:

Interrupted while waiting for the program.
Give up (and stop debugging it)? (y or n)

If you type y, GDB abandons the remote debugging session. (If you decide you want to
try again later, you can use ‘target remote’ again to connect once more.) If you type n,
GDB goes back to waiting.

146 Debugging with GDB

Chapter 18: Configuration-Specific Information 147

18 Configuration-Specific Information

While nearly all GDB commands are available for all native and cross versions of the
debugger, there are some exceptions. This chapter describes things that are only available
in certain configurations.

There are three major categories of configurations: native configurations, where the host
and target are the same, embedded operating system configurations, which are usually the
same for several different processor architectures, and bare embedded processors, which are
quite different from each other.

18.1 Native

This section describes details specific to particular native configurations.

18.1.1 HP-UX

On HP-UX systems, if you refer to a function or variable name that begins with a dollar
sign, GDB searches for a user or system name first, before it searches for a convenience
variable.

18.1.2 SVR4 process information

Many versions of SVR4 provide a facility called ‘/proc’ that can be used to examine
the image of a running process using file-system subroutines. If GDB is configured for an
operating system with this facility, the command info proc is available to report on several
kinds of information about the process running your program. info proc works only on
SVR4 systems that include the procfs code. This includes OSF/1 (Digital Unix), Solaris,
Irix, and Unixware, but not HP-UX or gnu/Linux, for example.

info proc Summarize available information about the process.

info proc mappings
Report on the address ranges accessible in the program, with information on
whether your program may read, write, or execute each range.

18.1.3 Features for Debugging djgpp Programs

djgpp is the port of gnu development tools to MS-DOS and MS-Windows. djgpp

programs are 32-bit protected-mode programs that use the DPMI (DOS Protected-Mode
Interface) API to run on top of real-mode DOS systems and their emulations.

GDB supports native debugging of djgpp programs, and defines a few commands specific
to the djgpp port. This subsection describes those commands.

info dos This is a prefix of djgpp-specific commands which print information about the
target system and important OS structures.

info dos sysinfo
This command displays assorted information about the underlying platform:
the CPU type and features, the OS version and flavor, the DPMI version, and
the available conventional and DPMI memory.

148 Debugging with GDB

info dos gdt
info dos ldt
info dos idt

These 3 commands display entries from, respectively, Global, Local, and Inter-
rupt Descriptor Tables (GDT, LDT, and IDT). The descriptor tables are data
structures which store a descriptor for each segment that is currently in use.
The segment’s selector is an index into a descriptor table; the table entry for
that index holds the descriptor’s base address and limit, and its attributes and
access rights.
A typical djgpp program uses 3 segments: a code segment, a data segment
(used for both data and the stack), and a DOS segment (which allows access to
DOS/BIOS data structures and absolute addresses in conventional memory).
However, the DPMI host will usually define additional segments in order to
support the DPMI environment.
These commands allow to display entries from the descriptor tables. Without
an argument, all entries from the specified table are displayed. An argument,
which should be an integer expression, means display a single entry whose index
is given by the argument. For example, here’s a convenient way to display
information about the debugged program’s data segment:
(gdb) info dos ldt $ds
0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)

This comes in handy when you want to see whether a pointer is outside the
data segment’s limit (i.e. garbled).

info dos pde
info dos pte

These two commands display entries from, respectively, the Page Directory and
the Page Tables. Page Directories and Page Tables are data structures which
control how virtual memory addresses are mapped into physical addresses. A
Page Table includes an entry for every page of memory that is mapped into the
program’s address space; there may be several Page Tables, each one holding
up to 4096 entries. A Page Directory has up to 4096 entries, one each for every
Page Table that is currently in use.
Without an argument, info dos pde displays the entire Page Directory, and
info dos pte displays all the entries in all of the Page Tables. An argument,
an integer expression, given to the info dos pde command means display only
that entry from the Page Directory table. An argument given to the info dos

pte command means display entries from a single Page Table, the one pointed
to by the specified entry in the Page Directory.
These commands are useful when your program uses DMA (Direct Memory
Access), which needs physical addresses to program the DMA controller.
These commands are supported only with some DPMI servers.

info dos address-pte addr
This command displays the Page Table entry for a specified linear address. The
argument linear address addr should already have the appropriate segment’s
base address added to it, because this command accepts addresses which may

Chapter 18: Configuration-Specific Information 149

belong to any segment. For example, here’s how to display the Page Table
entry for the page where the variable i is stored:
(gdb) info dos address-pte __djgpp_base_address + (char *)&i
Page Table entry for address 0x11a00d30:
Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30

This says that i is stored at offset 0xd30 from the page whose physical base
address is 0x02698000, and prints all the attributes of that page.
Note that you must cast the addresses of variables to a char *, since oth-
erwise the value of __djgpp_base_address, the base address of all variables
and functions in a djgpp program, will be added using the rules of C pointer
arithmetics: if i is declared an int, GDB will add 4 times the value of __
djgpp_base_address to the address of i.
Here’s another example, it displays the Page Table entry for the transfer buffer:
(gdb) info dos address-pte *((unsigned *)&_go32_info_block + 3)
Page Table entry for address 0x29110:
Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110

(The + 3 offset is because the transfer buffer’s address is the 3rd member of the
_go32_info_block structure.) The output of this command clearly shows that
addresses in conventional memory are mapped 1:1, i.e. the physical and linear
addresses are identical.
This command is supported only with some DPMI servers.

18.1.4 Features for Debugging MS Windows PE executables

GDB supports native debugging of MS Windows programs, and defines a few commands
specific to the Cygwin port. This subsection describes those commands.

info w32 This is a prefix of MS Windows specific commands which print information
about the target system and important OS structures.

info w32 selector
This command displays information returned by the Win32 API
GetThreadSelectorEntry function. It takes an optional argument that is
evaluated to a long value to give the information about this given selector.
Without argument, this command displays information about the the six
segment registers.

info dll This is a Cygwin specific alias of info shared.

dll-symbols
This command loads symbols from a dll similarly to add-sym command but
without the need to specify a base address.

set new-console mode
If mode is on the debuggee will be started in a new console on next start. If
mode is offi, the debuggee will be started in the same console as the debugger.

show new-console
Displays whether a new console is used when the debuggee is started.

150 Debugging with GDB

set new-group mode
This boolean value controls whether the debuggee should start a new group or
stay in the same group as the debugger. This affects the way the Windows OS
handles Ctrl-C.

show new-group
Displays current value of new-group boolean.

set debugevents
This boolean value adds debug output concerning events seen by the debugger.

set debugexec
This boolean value adds debug output concerning execute events seen by the
debugger.

set debugexceptions
This boolean value adds debug ouptut concerning exception events seen by the
debugger.

set debugmemory
This boolean value adds debug ouptut concerning memory events seen by the
debugger.

set shell This boolean values specifies whether the debuggee is called via a shell or di-
rectly (default value is on).

show shell
Displays if the debuggee will be started with a shell.

18.2 Embedded Operating Systems

This section describes configurations involving the debugging of embedded operating
systems that are available for several different architectures.

GDB includes the ability to debug programs running on various real-time operating
systems.

18.2.1 Using GDB with VxWorks

target vxworks machinename
A VxWorks system, attached via TCP/IP. The argument machinename is the
target system’s machine name or IP address.

On VxWorks, load links filename dynamically on the current target system as well as
adding its symbols in GDB.

GDB enables developers to spawn and debug tasks running on networked VxWorks
targets from a Unix host. Already-running tasks spawned from the VxWorks shell can also
be debugged. GDB uses code that runs on both the Unix host and on the VxWorks target.
The program gdb is installed and executed on the Unix host. (It may be installed with the
name vxgdb, to distinguish it from a GDB for debugging programs on the host itself.)

Chapter 18: Configuration-Specific Information 151

VxWorks-timeout args
All VxWorks-based targets now support the option vxworks-timeout. This
option is set by the user, and args represents the number of seconds GDB waits
for responses to rpc’s. You might use this if your VxWorks target is a slow
software simulator or is on the far side of a thin network line.

The following information on connecting to VxWorks was current when this manual was
produced; newer releases of VxWorks may use revised procedures.

To use GDB with VxWorks, you must rebuild your VxWorks kernel to include the remote
debugging interface routines in the VxWorks library ‘rdb.a’. To do this, define INCLUDE_
RDB in the VxWorks configuration file ‘configAll.h’ and rebuild your VxWorks kernel. The
resulting kernel contains ‘rdb.a’, and spawns the source debugging task tRdbTask when
VxWorks is booted. For more information on configuring and remaking VxWorks, see the
manufacturer’s manual.

Once you have included ‘rdb.a’ in your VxWorks system image and set your Unix
execution search path to find GDB, you are ready to run GDB. From your Unix host, run
gdb (or vxgdb, depending on your installation).

GDB comes up showing the prompt:
(vxgdb)

18.2.1.1 Connecting to VxWorks

The GDB command target lets you connect to a VxWorks target on the network. To
connect to a target whose host name is “tt”, type:

(vxgdb) target vxworks tt

GDB displays messages like these:
Attaching remote machine across net...
Connected to tt.

GDB then attempts to read the symbol tables of any object modules loaded into the
VxWorks target since it was last booted. GDB locates these files by searching the directories
listed in the command search path (see Section 4.4 [Your program’s environment], page 25);
if it fails to find an object file, it displays a message such as:

prog.o: No such file or directory.

When this happens, add the appropriate directory to the search path with the GDB
command path, and execute the target command again.

18.2.1.2 VxWorks download

If you have connected to the VxWorks target and you want to debug an object that has
not yet been loaded, you can use the GDB load command to download a file from Unix
to VxWorks incrementally. The object file given as an argument to the load command is
actually opened twice: first by the VxWorks target in order to download the code, then
by GDB in order to read the symbol table. This can lead to problems if the current
working directories on the two systems differ. If both systems have NFS mounted the same
filesystems, you can avoid these problems by using absolute paths. Otherwise, it is simplest
to set the working directory on both systems to the directory in which the object file resides,

152 Debugging with GDB

and then to reference the file by its name, without any path. For instance, a program
‘prog.o’ may reside in ‘vxpath/vw/demo/rdb’ in VxWorks and in ‘hostpath/vw/demo/rdb’
on the host. To load this program, type this on VxWorks:

-> cd "vxpath/vw/demo/rdb"

Then, in GDB, type:

(vxgdb) cd hostpath/vw/demo/rdb
(vxgdb) load prog.o

GDB displays a response similar to this:

Reading symbol data from wherever/vw/demo/rdb/prog.o... done.

You can also use the load command to reload an object module after editing and recom-
piling the corresponding source file. Note that this makes GDB delete all currently-defined
breakpoints, auto-displays, and convenience variables, and to clear the value history. (This
is necessary in order to preserve the integrity of debugger’s data structures that reference
the target system’s symbol table.)

18.2.1.3 Running tasks

You can also attach to an existing task using the attach command as follows:

(vxgdb) attach task

where task is the VxWorks hexadecimal task ID. The task can be running or suspended
when you attach to it. Running tasks are suspended at the time of attachment.

18.3 Embedded Processors

This section goes into details specific to particular embedded configurations.

18.3.1 ARM

target rdi dev
ARM Angel monitor, via RDI library interface to ADP protocol. You may use
this target to communicate with both boards running the Angel monitor, or
with the EmbeddedICE JTAG debug device.

target rdp dev
ARM Demon monitor.

18.3.2 Hitachi H8/300

target hms dev
A Hitachi SH, H8/300, or H8/500 board, attached via serial line to your host.
Use special commands device and speed to control the serial line and the
communications speed used.

target e7000 dev
E7000 emulator for Hitachi H8 and SH.

Chapter 18: Configuration-Specific Information 153

target sh3 dev
target sh3e dev

Hitachi SH-3 and SH-3E target systems.

When you select remote debugging to a Hitachi SH, H8/300, or H8/500 board, the load
command downloads your program to the Hitachi board and also opens it as the current
executable target for GDB on your host (like the file command).

GDB needs to know these things to talk to your Hitachi SH, H8/300, or H8/500:

1. that you want to use ‘target hms’, the remote debugging interface for Hitachi mi-
croprocessors, or ‘target e7000’, the in-circuit emulator for the Hitachi SH and the
Hitachi 300H. (‘target hms’ is the default when GDB is configured specifically for the
Hitachi SH, H8/300, or H8/500.)

2. what serial device connects your host to your Hitachi board (the first serial device
available on your host is the default).

3. what speed to use over the serial device.

18.3.2.1 Connecting to Hitachi boards

Use the special GDB command ‘device port’ if you need to explicitly set the serial device.
The default port is the first available port on your host. This is only necessary on Unix
hosts, where it is typically something like ‘/dev/ttya’.

GDB has another special command to set the communications speed: ‘speed bps’. This
command also is only used from Unix hosts; on DOS hosts, set the line speed as usual from
outside GDB with the DOS mode command (for instance, mode com2:9600,n,8,1,p for a
9600 bps connection).

The ‘device’ and ‘speed’ commands are available only when you use a Unix host to
debug your Hitachi microprocessor programs. If you use a DOS host, GDB depends on an
auxiliary terminate-and-stay-resident program called asynctsr to communicate with the
development board through a PC serial port. You must also use the DOS mode command
to set up the serial port on the DOS side.

The following sample session illustrates the steps needed to start a program under GDB
control on an H8/300. The example uses a sample H8/300 program called ‘t.x’. The
procedure is the same for the Hitachi SH and the H8/500.

First hook up your development board. In this example, we use a board attached to
serial port COM2; if you use a different serial port, substitute its name in the argument of
the mode command. When you call asynctsr, the auxiliary comms program used by the
debugger, you give it just the numeric part of the serial port’s name; for example, ‘asyncstr
2’ below runs asyncstr on COM2.

C:\H8300\TEST> asynctsr 2
C:\H8300\TEST> mode com2:9600,n,8,1,p

Resident portion of MODE loaded

COM2: 9600, n, 8, 1, p

154 Debugging with GDB

Warning: We have noticed a bug in PC-NFS that conflicts with asynctsr. If
you also run PC-NFS on your DOS host, you may need to disable it, or even
boot without it, to use asynctsr to control your development board.

Now that serial communications are set up, and the development board is connected,
you can start up GDB. Call gdb with the name of your program as the argument. GDB
prompts you, as usual, with the prompt ‘(gdb)’. Use two special commands to begin your
debugging session: ‘target hms’ to specify cross-debugging to the Hitachi board, and the
load command to download your program to the board. load displays the names of the
program’s sections, and a ‘*’ for each 2K of data downloaded. (If you want to refresh GDB
data on symbols or on the executable file without downloading, use the GDB commands
file or symbol-file. These commands, and load itself, are described in Section 15.1
[Commands to specify files], page 127.)

(eg-C:\H8300\TEST) gdb t.x
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.
GDB 5.3, Copyright 1992 Free Software Foundation, Inc...
(gdb) target hms
Connected to remote H8/300 HMS system.
(gdb) load t.x
.text : 0x8000 .. 0xabde ***********
.data : 0xabde .. 0xad30 *
.stack : 0xf000 .. 0xf014 *

At this point, you’re ready to run or debug your program. From here on, you can use
all the usual GDB commands. The break command sets breakpoints; the run command
starts your program; print or x display data; the continue command resumes execution
after stopping at a breakpoint. You can use the help command at any time to find out
more about GDB commands.

Remember, however, that operating system facilities aren’t available on your develop-
ment board; for example, if your program hangs, you can’t send an interrupt—but you can
press the reset switch!

Use the reset button on the development board
• to interrupt your program (don’t use ctl-C on the DOS host—it has no way to pass

an interrupt signal to the development board); and
• to return to the GDB command prompt after your program finishes normally. The

communications protocol provides no other way for GDB to detect program completion.

In either case, GDB sees the effect of a reset on the development board as a “normal
exit” of your program.

18.3.2.2 Using the E7000 in-circuit emulator

You can use the E7000 in-circuit emulator to develop code for either the Hitachi SH or
the H8/300H. Use one of these forms of the ‘target e7000’ command to connect GDB to
your E7000:

Chapter 18: Configuration-Specific Information 155

target e7000 port speed
Use this form if your E7000 is connected to a serial port. The port argument
identifies what serial port to use (for example, ‘com2’). The third argument is
the line speed in bits per second (for example, ‘9600’).

target e7000 hostname
If your E7000 is installed as a host on a TCP/IP network, you can just specify
its hostname; GDB uses telnet to connect.

18.3.2.3 Special GDB commands for Hitachi micros

Some GDB commands are available only for the H8/300:

set machine h8300
set machine h8300h

Condition GDB for one of the two variants of the H8/300 architecture with
‘set machine’. You can use ‘show machine’ to check which variant is currently
in effect.

18.3.3 H8/500

set memory mod
show memory

Specify which H8/500 memory model (mod) you are using with ‘set memory’;
check which memory model is in effect with ‘show memory’. The accepted values
for mod are small, big, medium, and compact.

18.3.4 Intel i960

target mon960 dev
MON960 monitor for Intel i960.

target nindy devicename
An Intel 960 board controlled by a Nindy Monitor. devicename is the name of
the serial device to use for the connection, e.g. ‘/dev/ttya’.

Nindy is a ROM Monitor program for Intel 960 target systems. When GDB is configured
to control a remote Intel 960 using Nindy, you can tell GDB how to connect to the 960 in
several ways:

• Through command line options specifying serial port, version of the Nindy protocol,
and communications speed;

• By responding to a prompt on startup;

• By using the target command at any point during your GDB session. See Section 16.2
[Commands for managing targets], page 135.

With the Nindy interface to an Intel 960 board, load downloads filename to the 960 as
well as adding its symbols in GDB.

156 Debugging with GDB

18.3.4.1 Startup with Nindy

If you simply start gdb without using any command-line options, you are prompted for
what serial port to use, before you reach the ordinary GDB prompt:

Attach /dev/ttyNN -- specify NN, or "quit" to quit:

Respond to the prompt with whatever suffix (after ‘/dev/tty’) identifies the serial port
you want to use. You can, if you choose, simply start up with no Nindy connection by
responding to the prompt with an empty line. If you do this and later wish to attach to
Nindy, use target (see Section 16.2 [Commands for managing targets], page 135).

18.3.4.2 Options for Nindy

These are the startup options for beginning your GDB session with a Nindy-960 board
attached:

-r port Specify the serial port name of a serial interface to be used to connect to the
target system. This option is only available when GDB is configured for the
Intel 960 target architecture. You may specify port as any of: a full pathname
(e.g. ‘-r /dev/ttya’), a device name in ‘/dev’ (e.g. ‘-r ttya’), or simply the
unique suffix for a specific tty (e.g. ‘-r a’).

-O (An uppercase letter “O”, not a zero.) Specify that GDB should use the “old”
Nindy monitor protocol to connect to the target system. This option is only
available when GDB is configured for the Intel 960 target architecture.

Warning: if you specify ‘-O’, but are actually trying to connect
to a target system that expects the newer protocol, the connection
fails, appearing to be a speed mismatch. GDB repeatedly attempts
to reconnect at several different line speeds. You can abort this
process with an interrupt.

-brk Specify that GDB should first send a BREAK signal to the target system, in an
attempt to reset it, before connecting to a Nindy target.

Warning: Many target systems do not have the hardware that this
requires; it only works with a few boards.

The standard ‘-b’ option controls the line speed used on the serial port.

18.3.4.3 Nindy reset command

reset For a Nindy target, this command sends a “break” to the remote target system;
this is only useful if the target has been equipped with a circuit to perform a
hard reset (or some other interesting action) when a break is detected.

18.3.5 Mitsubishi M32R/D

target m32r dev
Mitsubishi M32R/D ROM monitor.

Chapter 18: Configuration-Specific Information 157

18.3.6 M68k

The Motorola m68k configuration includes ColdFire support, and target command for
the following ROM monitors.

target abug dev
ABug ROM monitor for M68K.

target cpu32bug dev
CPU32BUG monitor, running on a CPU32 (M68K) board.

target dbug dev
dBUG ROM monitor for Motorola ColdFire.

target est dev
EST-300 ICE monitor, running on a CPU32 (M68K) board.

target rom68k dev
ROM 68K monitor, running on an M68K IDP board.

If GDB is configured with m68*-ericsson-*, it will instead have only a single special
target command:

target es1800 dev
ES-1800 emulator for M68K.

[context?]

target rombug dev
ROMBUG ROM monitor for OS/9000.

18.3.7 MIPS Embedded

GDB can use the MIPS remote debugging protocol to talk to a MIPS board attached to
a serial line. This is available when you configure GDB with ‘--target=mips-idt-ecoff’.

Use these GDB commands to specify the connection to your target board:

target mips port
To run a program on the board, start up gdb with the name of your program
as the argument. To connect to the board, use the command ‘target mips
port’, where port is the name of the serial port connected to the board. If the
program has not already been downloaded to the board, you may use the load
command to download it. You can then use all the usual GDB commands.
For example, this sequence connects to the target board through a serial port,
and loads and runs a program called prog through the debugger:

host$ gdb prog
GDB is free software and ...
(gdb) target mips /dev/ttyb
(gdb) load prog
(gdb) run

158 Debugging with GDB

target mips hostname:portnumber
On some GDB host configurations, you can specify a TCP connection (for
instance, to a serial line managed by a terminal concentrator) instead of a
serial port, using the syntax ‘hostname:portnumber’.

target pmon port
PMON ROM monitor.

target ddb port
NEC’s DDB variant of PMON for Vr4300.

target lsi port
LSI variant of PMON.

target r3900 dev
Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.

target array dev
Array Tech LSI33K RAID controller board.

GDB also supports these special commands for MIPS targets:

set processor args
show processor

Use the set processor command to set the type of MIPS processor when you
want to access processor-type-specific registers. For example, set processor
r3041 tells GDB to use the CPU registers appropriate for the 3041 chip. Use
the show processor command to see what MIPS processor GDB is using. Use
the info reg command to see what registers GDB is using.

set mipsfpu double
set mipsfpu single
set mipsfpu none
show mipsfpu

If your target board does not support the MIPS floating point coprocessor,
you should use the command ‘set mipsfpu none’ (if you need this, you may
wish to put the command in your GDB init file). This tells GDB how to
find the return value of functions which return floating point values. It also
allows GDB to avoid saving the floating point registers when calling functions
on the board. If you are using a floating point coprocessor with only single
precision floating point support, as on the r4650 processor, use the command
‘set mipsfpu single’. The default double precision floating point coprocessor
may be selected using ‘set mipsfpu double’.
In previous versions the only choices were double precision or no floating point,
so ‘set mipsfpu on’ will select double precision and ‘set mipsfpu off’ will se-
lect no floating point.
As usual, you can inquire about the mipsfpu variable with ‘show mipsfpu’.

set remotedebug n
show remotedebug

You can see some debugging information about communications with the board
by setting the remotedebug variable. If you set it to 1 using ‘set remotedebug

Chapter 18: Configuration-Specific Information 159

1’, every packet is displayed. If you set it to 2, every character is displayed. You
can check the current value at any time with the command ‘show remotedebug’.

set timeout seconds
set retransmit-timeout seconds
show timeout
show retransmit-timeout

You can control the timeout used while waiting for a packet, in the MIPS remote
protocol, with the set timeout seconds command. The default is 5 seconds.
Similarly, you can control the timeout used while waiting for an acknowledge-
ment of a packet with the set retransmit-timeout seconds command. The
default is 3 seconds. You can inspect both values with show timeout and show
retransmit-timeout. (These commands are only available when GDB is con-
figured for ‘--target=mips-idt-ecoff’.)
The timeout set by set timeout does not apply when GDB is waiting for your
program to stop. In that case, GDB waits forever because it has no way of
knowing how long the program is going to run before stopping.

18.3.8 PowerPC

target dink32 dev
DINK32 ROM monitor.

target ppcbug dev
target ppcbug1 dev

PPCBUG ROM monitor for PowerPC.

target sds dev
SDS monitor, running on a PowerPC board (such as Motorola’s ADS).

18.3.9 HP PA Embedded

target op50n dev
OP50N monitor, running on an OKI HPPA board.

target w89k dev
W89K monitor, running on a Winbond HPPA board.

18.3.10 Hitachi SH

target hms dev
A Hitachi SH board attached via serial line to your host. Use special commands
device and speed to control the serial line and the communications speed used.

target e7000 dev
E7000 emulator for Hitachi SH.

target sh3 dev
target sh3e dev

Hitachi SH-3 and SH-3E target systems.

160 Debugging with GDB

18.3.11 Tsqware Sparclet

GDB enables developers to debug tasks running on Sparclet targets from a Unix host.
GDB uses code that runs on both the Unix host and on the Sparclet target. The program
gdb is installed and executed on the Unix host.

remotetimeout args
GDB supports the option remotetimeout. This option is set by the user, and
args represents the number of seconds GDB waits for responses.

When compiling for debugging, include the options ‘-g’ to get debug information and
‘-Ttext’ to relocate the program to where you wish to load it on the target. You may also
want to add the options ‘-n’ or ‘-N’ in order to reduce the size of the sections. Example:

sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N

You can use objdump to verify that the addresses are what you intended:

sparclet-aout-objdump --headers --syms prog

Once you have set your Unix execution search path to find GDB, you are ready to
run GDB. From your Unix host, run gdb (or sparclet-aout-gdb, depending on your
installation).

GDB comes up showing the prompt:

(gdbslet)

18.3.11.1 Setting file to debug

The GDB command file lets you choose with program to debug.

(gdbslet) file prog

GDB then attempts to read the symbol table of ‘prog’. GDB locates the file by searching
the directories listed in the command search path. If the file was compiled with debug
information (option "-g"), source files will be searched as well. GDB locates the source
files by searching the directories listed in the directory search path (see Section 4.4 [Your
program’s environment], page 25). If it fails to find a file, it displays a message such as:

prog: No such file or directory.

When this happens, add the appropriate directories to the search paths with the GDB
commands path and dir, and execute the target command again.

18.3.11.2 Connecting to Sparclet

The GDB command target lets you connect to a Sparclet target. To connect to a target
on serial port “ttya”, type:

(gdbslet) target sparclet /dev/ttya
Remote target sparclet connected to /dev/ttya
main () at ../prog.c:3

GDB displays messages like these:

Connected to ttya.

Chapter 18: Configuration-Specific Information 161

18.3.11.3 Sparclet download

Once connected to the Sparclet target, you can use the GDB load command to download
the file from the host to the target. The file name and load offset should be given as
arguments to the load command. Since the file format is aout, the program must be loaded
to the starting address. You can use objdump to find out what this value is. The load
offset is an offset which is added to the VMA (virtual memory address) of each of the file’s
sections. For instance, if the program ‘prog’ was linked to text address 0x1201000, with
data at 0x12010160 and bss at 0x12010170, in GDB, type:

(gdbslet) load prog 0x12010000
Loading section .text, size 0xdb0 vma 0x12010000

If the code is loaded at a different address then what the program was linked to, you
may need to use the section and add-symbol-file commands to tell GDB where to map
the symbol table.

18.3.11.4 Running and debugging

You can now begin debugging the task using GDB’s execution control commands, b,
step, run, etc. See the GDB manual for the list of commands.

(gdbslet) b main
Breakpoint 1 at 0x12010000: file prog.c, line 3.
(gdbslet) run
Starting program: prog
Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
3 char *symarg = 0;
(gdbslet) step
4 char *execarg = "hello!";
(gdbslet)

18.3.12 Fujitsu Sparclite

target sparclite dev
Fujitsu sparclite boards, used only for the purpose of loading. You must use an
additional command to debug the program. For example: target remote dev
using GDB standard remote protocol.

18.3.13 Tandem ST2000

GDB may be used with a Tandem ST2000 phone switch, running Tandem’s STDBUG
protocol.

To connect your ST2000 to the host system, see the manufacturer’s manual. Once the
ST2000 is physically attached, you can run:

target st2000 dev speed

to establish it as your debugging environment. dev is normally the name of a serial device,
such as ‘/dev/ttya’, connected to the ST2000 via a serial line. You can instead specify dev
as a TCP connection (for example, to a serial line attached via a terminal concentrator)
using the syntax hostname:portnumber.

162 Debugging with GDB

The load and attach commands are not defined for this target; you must load your
program into the ST2000 as you normally would for standalone operation. GDB reads
debugging information (such as symbols) from a separate, debugging version of the program
available on your host computer.

These auxiliary GDB commands are available to help you with the ST2000 environment:

st2000 command
Send a command to the STDBUG monitor. See the manufacturer’s manual for
available commands.

connect Connect the controlling terminal to the STDBUG command monitor. When
you are done interacting with STDBUG, typing either of two character se-
quences gets you back to the GDB command prompt: 〈RET〉~. (Return, followed
by tilde and period) or 〈RET〉~〈C-d〉 (Return, followed by tilde and control-D).

18.3.14 Zilog Z8000

When configured for debugging Zilog Z8000 targets, GDB includes a Z8000 simulator.

For the Z8000 family, ‘target sim’ simulates either the Z8002 (the unsegmented variant
of the Z8000 architecture) or the Z8001 (the segmented variant). The simulator recognizes
which architecture is appropriate by inspecting the object code.

target sim args
Debug programs on a simulated CPU. If the simulator supports setup options,
specify them via args.

After specifying this target, you can debug programs for the simulated CPU in the same
style as programs for your host computer; use the file command to load a new program
image, the run command to run your program, and so on.

As well as making available all the usual machine registers (see Section 8.10 [Registers],
page 77), the Z8000 simulator provides three additional items of information as specially
named registers:

cycles Counts clock-ticks in the simulator.

insts Counts instructions run in the simulator.

time Execution time in 60ths of a second.

You can refer to these values in GDB expressions with the usual conventions; for example,
‘b fputc if $cycles>5000’ sets a conditional breakpoint that suspends only after at least
5000 simulated clock ticks.

18.4 Architectures

This section describes characteristics of architectures that affect all uses of GDB with
the architecture, both native and cross.

Chapter 18: Configuration-Specific Information 163

18.4.1 A29K

set rstack_high_address address
On AMD 29000 family processors, registers are saved in a separate register
stack. There is no way for GDB to determine the extent of this stack. Normally,
GDB just assumes that the stack is “large enough”. This may result in GDB
referencing memory locations that do not exist. If necessary, you can get around
this problem by specifying the ending address of the register stack with the set
rstack_high_address command. The argument should be an address, which
you probably want to precede with ‘0x’ to specify in hexadecimal.

show rstack_high_address
Display the current limit of the register stack, on AMD 29000 family processors.

18.4.2 Alpha

See the following section.

18.4.3 MIPS

Alpha- and MIPS-based computers use an unusual stack frame, which sometimes requires
GDB to search backward in the object code to find the beginning of a function.

To improve response time (especially for embedded applications, where GDB may be
restricted to a slow serial line for this search) you may want to limit the size of this search,
using one of these commands:

set heuristic-fence-post limit
Restrict GDB to examining at most limit bytes in its search for the beginning
of a function. A value of 0 (the default) means there is no limit. However,
except for 0, the larger the limit the more bytes heuristic-fence-post must
search and therefore the longer it takes to run.

show heuristic-fence-post
Display the current limit.

These commands are available only when GDB is configured for debugging programs on
Alpha or MIPS processors.

164 Debugging with GDB

Chapter 19: Controlling GDB 165

19 Controlling GDB

You can alter the way GDB interacts with you by using the set command. For commands
controlling how GDB displays data, see Section 8.7 [Print settings], page 70. Other settings
are described here.

19.1 Prompt

GDB indicates its readiness to read a command by printing a string called the prompt.
This string is normally ‘(gdb)’. You can change the prompt string with the set prompt
command. For instance, when debugging GDB with GDB, it is useful to change the prompt
in one of the GDB sessions so that you can always tell which one you are talking to.

Note: set prompt does not add a space for you after the prompt you set. This allows
you to set a prompt which ends in a space or a prompt that does not.

set prompt newprompt
Directs GDB to use newprompt as its prompt string henceforth.

show prompt
Prints a line of the form: ‘Gdb’s prompt is: your-prompt’

19.2 Command editing

GDB reads its input commands via the readline interface. This gnu library provides
consistent behavior for programs which provide a command line interface to the user. Ad-
vantages are gnu Emacs-style or vi-style inline editing of commands, csh-like history sub-
stitution, and a storage and recall of command history across debugging sessions.

You may control the behavior of command line editing in GDB with the command set.

set editing
set editing on

Enable command line editing (enabled by default).

set editing off
Disable command line editing.

show editing
Show whether command line editing is enabled.

19.3 Command history

GDB can keep track of the commands you type during your debugging sessions, so that
you can be certain of precisely what happened. Use these commands to manage the GDB
command history facility.

set history filename fname
Set the name of the GDB command history file to fname. This is the file where
GDB reads an initial command history list, and where it writes the command

166 Debugging with GDB

history from this session when it exits. You can access this list through history
expansion or through the history command editing characters listed below.
This file defaults to the value of the environment variable GDBHISTFILE, or to
‘./.gdb_history’ (‘./_gdb_history’ on MS-DOS) if this variable is not set.

set history save
set history save on

Record command history in a file, whose name may be specified with the set
history filename command. By default, this option is disabled.

set history save off
Stop recording command history in a file.

set history size size
Set the number of commands which GDB keeps in its history list. This defaults
to the value of the environment variable HISTSIZE, or to 256 if this variable is
not set.

History expansion assigns special meaning to the character !.
Since ! is also the logical not operator in C, history expansion is off by default. If you

decide to enable history expansion with the set history expansion on command, you may
sometimes need to follow ! (when it is used as logical not, in an expression) with a space
or a tab to prevent it from being expanded. The readline history facilities do not attempt
substitution on the strings != and !(, even when history expansion is enabled.

The commands to control history expansion are:

set history expansion on
set history expansion

Enable history expansion. History expansion is off by default.

set history expansion off
Disable history expansion.
The readline code comes with more complete documentation of editing and
history expansion features. Users unfamiliar with gnu Emacs or vi may wish
to read it.

show history
show history filename
show history save
show history size
show history expansion

These commands display the state of the GDB history parameters. show
history by itself displays all four states.

show commands
Display the last ten commands in the command history.

show commands n
Print ten commands centered on command number n.

show commands +
Print ten commands just after the commands last printed.

Chapter 19: Controlling GDB 167

19.4 Screen size

Certain commands to GDB may produce large amounts of information output to the
screen. To help you read all of it, GDB pauses and asks you for input at the end of each
page of output. Type 〈RET〉 when you want to continue the output, or q to discard the
remaining output. Also, the screen width setting determines when to wrap lines of output.
Depending on what is being printed, GDB tries to break the line at a readable place, rather
than simply letting it overflow onto the following line.

Normally GDB knows the size of the screen from the terminal driver software. For
example, on Unix GDB uses the termcap data base together with the value of the TERM
environment variable and the stty rows and stty cols settings. If this is not correct, you
can override it with the set height and set width commands:

set height lpp
show height
set width cpl
show width

These set commands specify a screen height of lpp lines and a screen width of
cpl characters. The associated show commands display the current settings.
If you specify a height of zero lines, GDB does not pause during output no
matter how long the output is. This is useful if output is to a file or to an
editor buffer.
Likewise, you can specify ‘set width 0’ to prevent GDB from wrapping its
output.

19.5 Numbers

You can always enter numbers in octal, decimal, or hexadecimal in GDB by the usual
conventions: octal numbers begin with ‘0’, decimal numbers end with ‘.’, and hexadecimal
numbers begin with ‘0x’. Numbers that begin with none of these are, by default, entered in
base 10; likewise, the default display for numbers—when no particular format is specified—
is base 10. You can change the default base for both input and output with the set radix
command.

set input-radix base
Set the default base for numeric input. Supported choices for base are decimal
8, 10, or 16. base must itself be specified either unambiguously or using the
current default radix; for example, any of

set radix 012
set radix 10.
set radix 0xa

sets the base to decimal. On the other hand, ‘set radix 10’ leaves the radix
unchanged no matter what it was.

set output-radix base
Set the default base for numeric display. Supported choices for base are decimal
8, 10, or 16. base must itself be specified either unambiguously or using the
current default radix.

168 Debugging with GDB

show input-radix
Display the current default base for numeric input.

show output-radix
Display the current default base for numeric display.

19.6 Optional warnings and messages

By default, GDB is silent about its inner workings. If you are running on a slow machine,
you may want to use the set verbose command. This makes GDB tell you when it does a
lengthy internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those which announce that the
symbol table for a source file is being read; see symbol-file in Section 15.1 [Commands to
specify files], page 127.

set verbose on
Enables GDB output of certain informational messages.

set verbose off
Disables GDB output of certain informational messages.

show verbose
Displays whether set verbose is on or off.

By default, if GDB encounters bugs in the symbol table of an object file, it is silent;
but if you are debugging a compiler, you may find this information useful (see Section 15.2
[Errors reading symbol files], page 132).

set complaints limit
Permits GDB to output limit complaints about each type of unusual symbols
before becoming silent about the problem. Set limit to zero to suppress all com-
plaints; set it to a large number to prevent complaints from being suppressed.

show complaints
Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks what sometimes seems to be a lot of stupid
questions to confirm certain commands. For example, if you try to run a program which is
already running:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)

If you are willing to unflinchingly face the consequences of your own commands, you can
disable this “feature”:

set confirm off
Disables confirmation requests.

set confirm on
Enables confirmation requests (the default).

show confirm
Displays state of confirmation requests.

Chapter 19: Controlling GDB 169

19.7 Optional messages about internal happenings

set debug arch
Turns on or off display of gdbarch debugging info. The default is off

show debug arch
Displays the current state of displaying gdbarch debugging info.

set debug event
Turns on or off display of GDB event debugging info. The default is off.

show debug event
Displays the current state of displaying GDB event debugging info.

set debug expression
Turns on or off display of GDB expression debugging info. The default is off.

show debug expression
Displays the current state of displaying GDB expression debugging info.

set debug overload
Turns on or off display of GDB C++ overload debugging info. This includes info
such as ranking of functions, etc. The default is off.

show debug overload
Displays the current state of displaying GDB C++ overload debugging info.

set debug remote
Turns on or off display of reports on all packets sent back and forth across the
serial line to the remote machine. The info is printed on the GDB standard
output stream. The default is off.

show debug remote
Displays the state of display of remote packets.

set debug serial
Turns on or off display of GDB serial debugging info. The default is off.

show debug serial
Displays the current state of displaying GDB serial debugging info.

set debug target
Turns on or off display of GDB target debugging info. This info includes what
is going on at the target level of GDB, as it happens. The default is off.

show debug target
Displays the current state of displaying GDB target debugging info.

set debug varobj
Turns on or off display of GDB variable object debugging info. The default is
off.

show debug varobj
Displays the current state of displaying GDB variable object debugging info.

170 Debugging with GDB

Chapter 20: Canned Sequences of Commands 171

20 Canned Sequences of Commands

Aside from breakpoint commands (see Section 5.1.7 [Breakpoint command lists],
page 43), GDB provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files.

20.1 User-defined commands

A user-defined command is a sequence of GDB commands to which you assign a new
name as a command. This is done with the define command. User commands may accept
up to 10 arguments separated by whitespace. Arguments are accessed within the user
command via $arg0. . . $arg9. A trivial example:

define adder
print $arg0 + $arg1 + $arg2

To execute the command use:
adder 1 2 3

This defines the command adder, which prints the sum of its three arguments. Note the
arguments are text substitutions, so they may reference variables, use complex expressions,
or even perform inferior functions calls.

define commandname
Define a command named commandname. If there is already a command by
that name, you are asked to confirm that you want to redefine it.
The definition of the command is made up of other GDB command lines, which
are given following the define command. The end of these commands is marked
by a line containing end.

if Takes a single argument, which is an expression to evaluate. It is followed by a
series of commands that are executed only if the expression is true (nonzero).
There can then optionally be a line else, followed by a series of commands that
are only executed if the expression was false. The end of the list is marked by
a line containing end.

while The syntax is similar to if: the command takes a single argument, which is
an expression to evaluate, and must be followed by the commands to execute,
one per line, terminated by an end. The commands are executed repeatedly as
long as the expression evaluates to true.

document commandname
Document the user-defined command commandname, so that it can be ac-
cessed by help. The command commandname must already be defined. This
command reads lines of documentation just as define reads the lines of the
command definition, ending with end. After the document command is fin-
ished, help on command commandname displays the documentation you have
written.
You may use the document command again to change the documentation of a
command. Redefining the command with define does not change the docu-
mentation.

172 Debugging with GDB

help user-defined
List all user-defined commands, with the first line of the documentation (if any)
for each.

show user
show user commandname

Display the GDB commands used to define commandname (but not its docu-
mentation). If no commandname is given, display the definitions for all user-
defined commands.

show max-user-call-depth
set max-user-call-depth

The value of max-user-call-depth controls how many recursion levels are
allowed in user-defined commands before GDB suspects an infinite recursion
and aborts the command.

When user-defined commands are executed, the commands of the definition are not
printed. An error in any command stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed without asking
when used inside a user-defined command. Many GDB commands that normally print mes-
sages to say what they are doing omit the messages when used in a user-defined command.

20.2 User-defined command hooks

You may define hooks, which are a special kind of user-defined command. Whenever
you run the command ‘foo’, if the user-defined command ‘hook-foo’ exists, it is executed
(with no arguments) before that command.

A hook may also be defined which is run after the command you executed. Whenever you
run the command ‘foo’, if the user-defined command ‘hookpost-foo’ exists, it is executed
(with no arguments) after that command. Post-execution hooks may exist simultaneously
with pre-execution hooks, for the same command.

It is valid for a hook to call the command which it hooks. If this occurs, the hook is not
re-executed, thereby avoiding infinte recursion.

In addition, a pseudo-command, ‘stop’ exists. Defining (‘hook-stop’) makes the asso-
ciated commands execute every time execution stops in your program: before breakpoint
commands are run, displays are printed, or the stack frame is printed.

For example, to ignore SIGALRM signals while single-stepping, but treat them normally
during normal execution, you could define:

define hook-stop
handle SIGALRM nopass
end

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGLARM pass

Chapter 20: Canned Sequences of Commands 173

end

As a further example, to hook at the begining and end of the echo command, and to
add extra text to the beginning and end of the message, you could define:

define hook-echo
echo <<<---
end

define hookpost-echo
echo --->>>\n
end

(gdb) echo Hello World
<<<---Hello World--->>>
(gdb)

You can define a hook for any single-word command in GDB, but not for command
aliases; you should define a hook for the basic command name, e.g. backtrace rather than
bt. If an error occurs during the execution of your hook, execution of GDB commands
stops and GDB issues a prompt (before the command that you actually typed had a chance
to run).

If you try to define a hook which does not match any known command, you get a warning
from the define command.

20.3 Command files

A command file for GDB is a file of lines that are GDB commands. Comments (lines
starting with #) may also be included. An empty line in a command file does nothing; it
does not mean to repeat the last command, as it would from the terminal.

When you start GDB, it automatically executes commands from its init files, normally
called ‘.gdbinit’1. During startup, GDB does the following:
1. Reads the init file (if any) in your home directory2.
2. Processes command line options and operands.
3. Reads the init file (if any) in the current working directory.
4. Reads command files specified by the ‘-x’ option.

The init file in your home directory can set options (such as ‘set complaints’) that affect
subsequent processing of command line options and operands. Init files are not executed if
you use the ‘-nx’ option (see Section 2.1.2 [Choosing modes], page 13).

On some configurations of GDB, the init file is known by a different name (these are typ-
ically environments where a specialized form of GDB may need to coexist with other forms,
hence a different name for the specialized version’s init file). These are the environments
with special init file names:

1 The DJGPP port of GDB uses the name ‘gdb.ini’ instead, due to the limitations of file names imposed
by DOS filesystems.

2 On DOS/Windows systems, the home directory is the one pointed to by the HOME environment variable.

174 Debugging with GDB

• VxWorks (Wind River Systems real-time OS): ‘.vxgdbinit’
• OS68K (Enea Data Systems real-time OS): ‘.os68gdbinit’
• ES-1800 (Ericsson Telecom AB M68000 emulator): ‘.esgdbinit’

You can also request the execution of a command file with the source command:

source filename
Execute the command file filename.

The lines in a command file are executed sequentially. They are not printed as they are
executed. An error in any command terminates execution of the command file and control
is returned to the console.

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file. Many GDB commands that normally print messages to say
what they are doing omit the messages when called from command files.

GDB also accepts command input from standard input. In this mode, normal output
goes to standard output and error output goes to standard error. Errors in a command file
supplied on standard input do not terminate execution of the command file — execution
continues with the next command.

gdb < cmds > log 2>&1

(The syntax above will vary depending on the shell used.) This example will execute
commands from the file ‘cmds’. All output and errors would be directed to ‘log’.

20.4 Commands for controlled output

During the execution of a command file or a user-defined command, normal GDB output
is suppressed; the only output that appears is what is explicitly printed by the commands
in the definition. This section describes three commands useful for generating exactly the
output you want.

echo text Print text. Nonprinting characters can be included in text using C escape se-
quences, such as ‘\n’ to print a newline. No newline is printed unless you specify
one. In addition to the standard C escape sequences, a backslash followed by a
space stands for a space. This is useful for displaying a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise trimmed
from all arguments. To print ‘ and foo = ’, use the command ‘echo \ and foo
= \ ’.
A backslash at the end of text can be used, as in C, to continue the command
onto subsequent lines. For example,

echo This is some text\n\
which is continued\n\
onto several lines.\n

produces the same output as
echo This is some text\n
echo which is continued\n
echo onto several lines.\n

Chapter 20: Canned Sequences of Commands 175

output expression
Print the value of expression and nothing but that value: no newlines, no
‘$nn = ’. The value is not entered in the value history either. See Section 8.1
[Expressions], page 63, for more information on expressions.

output/fmt expression
Print the value of expression in format fmt. You can use the same formats as
for print. See Section 8.4 [Output formats], page 66, for more information.

printf string, expressions...
Print the values of the expressions under the control of string. The expressions
are separated by commas and may be either numbers or pointers. Their values
are printed as specified by string, exactly as if your program were to execute
the C subroutine

printf (string, expressions...);

For example, you can print two values in hex like this:
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are
the simple ones that consist of backslash followed by a letter.

176 Debugging with GDB

Chapter 21: GDB Text User Interface 177

21 GDB Text User Interface

The GDB Text User Interface, TUI in short, is a terminal interface which uses the
curses library to show the source file, the assembly output, the program registers and GDB
commands in separate text windows. The TUI is available only when GDB is configured
with the --enable-tui configure option (see Section B.3 [Configure Options], page 279).

21.1 TUI overview

The TUI has two display modes that can be switched while GDB runs:
• A curses (or TUI) mode in which it displays several text windows on the terminal.
• A standard mode which corresponds to the GDB configured without the TUI.

In the TUI mode, GDB can display several text window on the terminal:

command This window is the GDB command window with the GDB prompt and the
GDB outputs. The GDB input is still managed using readline but through the
TUI. The command window is always visible.

source The source window shows the source file of the program. The current line as
well as active breakpoints are displayed in this window.

assembly The assembly window shows the disassembly output of the program.

register This window shows the processor registers. It detects when a register is changed
and when this is the case, registers that have changed are highlighted.

The source and assembly windows show the current program position by highlighting
the current line and marking them with the ‘>’ marker. Breakpoints are also indicated with
two markers. A first one indicates the breakpoint type:

B Breakpoint which was hit at least once.

b Breakpoint which was never hit.

H Hardware breakpoint which was hit at least once.

h Hardware breakpoint which was never hit.

The second marker indicates whether the breakpoint is enabled or not:

+ Breakpoint is enabled.

- Breakpoint is disabled.

The source, assembly and register windows are attached to the thread and the frame
position. They are updated when the current thread changes, when the frame changes
or when the program counter changes. These three windows are arranged by the TUI
according to several layouts. The layout defines which of these three windows are visible.
The following layouts are available:
• source
• assembly
• source and assembly

178 Debugging with GDB

• source and registers
• assembly and registers

On top of the command window a status line gives various information concerning the
current process begin debugged. The status line is updated when the information it shows
changes. The following fields are displayed:

target Indicates the current gdb target (see Chapter 16 [Specifying a Debugging Tar-
get], page 135).

process Gives information about the current process or thread number. When no pro-
cess is being debugged, this field is set to No process.

function Gives the current function name for the selected frame. The name is demangled
if demangling is turned on (see Section 8.7 [Print Settings], page 70). When
there is no symbol corresponding to the current program counter the string ??
is displayed.

line Indicates the current line number for the selected frame. When the current line
number is not known the string ?? is displayed.

pc Indicates the current program counter address.

21.2 TUI Key Bindings

The TUI installs several key bindings in the readline keymaps (see Chapter 26 [Command
Line Editing], page 253). They allow to leave or enter in the TUI mode or they operate
directly on the TUI layout and windows. The TUI also provides a SingleKey keymap which
binds several keys directly to GDB commands. The following key bindings are installed for
both TUI mode and the GDB standard mode.

C-x C-a

C-x a

C-x A Enter or leave the TUI mode. When the TUI mode is left, the curses window
management is left and GDB operates using its standard mode writing on the
terminal directly. When the TUI mode is entered, the control is given back to
the curses windows. The screen is then refreshed.

C-x 1 Use a TUI layout with only one window. The layout will either be ‘source’ or
‘assembly’. When the TUI mode is not active, it will switch to the TUI mode.
Think of this key binding as the Emacs C-x 1 binding.

C-x 2 Use a TUI layout with at least two windows. When the current layout shows
already two windows, a next layout with two windows is used. When a new
layout is chosen, one window will always be common to the previous layout and
the new one.
Think of it as the Emacs C-x 2 binding.

C-x s Use the TUI SingleKey keymap that binds single key to gdb commands (see
Section 21.3 [TUI Single Key Mode], page 179).

The following key bindings are handled only by the TUI mode:

Chapter 21: GDB Text User Interface 179

〈PgUp〉 Scroll the active window one page up.

〈PgDn〉 Scroll the active window one page down.

〈Up〉 Scroll the active window one line up.

〈Down〉 Scroll the active window one line down.

〈Left〉 Scroll the active window one column left.

〈Right〉 Scroll the active window one column right.

〈C-L〉 Refresh the screen.

In the TUI mode, the arrow keys are used by the active window for scrolling. This means
they are not available for readline. It is necessary to use other readline key bindings such
as 〈C-p〉, 〈C-n〉, 〈C-b〉 and 〈C-f〉.

21.3 TUI Single Key Mode

The TUI provides a SingleKey mode in which it installs a particular key binding in the
readline keymaps to connect single keys to some gdb commands.

c continue

d down

f finish

n next

q exit the SingleKey mode.

r run

s step

u up

v info locals

w where

Other keys temporarily switch to the GDB command prompt. The key that was pressed
is inserted in the editing buffer so that it is possible to type most GDB commands without
interaction with the TUI SingleKey mode. Once the command is entered the TUI SingleKey
mode is restored. The only way to permanently leave this mode is by hitting 〈q〉 or ‘〈C-x〉
〈s〉’.

21.4 TUI specific commands

The TUI has specific commands to control the text windows. These commands are
always available, that is they do not depend on the current terminal mode in which GDB
runs. When GDB is in the standard mode, using these commands will automatically switch
in the TUI mode.

info win List and give the size of all displayed windows.

180 Debugging with GDB

layout next
Display the next layout.

layout prev
Display the previous layout.

layout src
Display the source window only.

layout asm
Display the assembly window only.

layout split
Display the source and assembly window.

layout regs
Display the register window together with the source or assembly window.

focus next | prev | src | asm | regs | split
Set the focus to the named window. This command allows to change the active
window so that scrolling keys can be affected to another window.

refresh Refresh the screen. This is similar to using 〈C-L〉 key.

update Update the source window and the current execution point.

winheight name +count
winheight name -count

Change the height of the window name by count lines. Positive counts increase
the height, while negative counts decrease it.

21.5 TUI configuration variables

The TUI has several configuration variables that control the appearance of windows on
the terminal.

set tui border-kind kind
Select the border appearance for the source, assembly and register windows.
The possible values are the following:

space Use a space character to draw the border.

ascii Use ascii characters + - and | to draw the border.

acs Use the Alternate Character Set to draw the border. The border is
drawn using character line graphics if the terminal supports them.

set tui active-border-mode mode
Select the attributes to display the border of the active window. The possible
values are normal, standout, reverse, half, half-standout, bold and bold-
standout.

set tui border-mode mode
Select the attributes to display the border of other windows. The mode can be
one of the following:

Chapter 21: GDB Text User Interface 181

normal Use normal attributes to display the border.

standout Use standout mode.

reverse Use reverse video mode.

half Use half bright mode.

half-standout
Use half bright and standout mode.

bold Use extra bright or bold mode.

bold-standout
Use extra bright or bold and standout mode.

182 Debugging with GDB

Chapter 22: Using GDB under gnu Emacs 183

22 Using GDB under gnu Emacs

A special interface allows you to use gnu Emacs to view (and edit) the source files for
the program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs. Give the executable file you
want to debug as an argument. This command starts GDB as a subprocess of Emacs, with
input and output through a newly created Emacs buffer.

Using GDB under Emacs is just like using GDB normally except for two things:
• All “terminal” input and output goes through the Emacs buffer.

This applies both to GDB commands and their output, and to the input and output
done by the program you are debugging.

This is useful because it means that you can copy the text of previous commands and
input them again; you can even use parts of the output in this way.

All the facilities of Emacs’ Shell mode are available for interacting with your program.
In particular, you can send signals the usual way—for example, C-c C-c for an interrupt,
C-c C-z for a stop.
• GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds the source file for
that frame and puts an arrow (‘=>’) at the left margin of the current line. Emacs uses a
separate buffer for source display, and splits the screen to show both your GDB session and
the source.

Explicit GDB list or search commands still produce output as usual, but you probably
have no reason to use them from Emacs.

Warning: If the directory where your program resides is not your current di-
rectory, it can be easy to confuse Emacs about the location of the source files,
in which case the auxiliary display buffer does not appear to show your source.
GDB can find programs by searching your environment’s PATH variable, so the
GDB input and output session proceeds normally; but Emacs does not get
enough information back from GDB to locate the source files in this situation.
To avoid this problem, either start GDB mode from the directory where your
program resides, or specify an absolute file name when prompted for the M-x
gdb argument.
A similar confusion can result if you use the GDB file command to switch to
debugging a program in some other location, from an existing GDB buffer in
Emacs.

By default, M-x gdb calls the program called ‘gdb’. If you need to call GDB by a different
name (for example, if you keep several configurations around, with different names) you can
set the Emacs variable gdb-command-name; for example,

(setq gdb-command-name "mygdb")

(preceded by M-: or ESC :, or typed in the *scratch* buffer, or in your ‘.emacs’ file) makes
Emacs call the program named “mygdb” instead.

In the GDB I/O buffer, you can use these special Emacs commands in addition to the
standard Shell mode commands:

184 Debugging with GDB

C-h m Describe the features of Emacs’ GDB Mode.

M-s Execute to another source line, like the GDB step command; also update the
display window to show the current file and location.

M-n Execute to next source line in this function, skipping all function calls, like the
GDB next command. Then update the display window to show the current file
and location.

M-i Execute one instruction, like the GDB stepi command; update display window
accordingly.

M-x gdb-nexti

Execute to next instruction, using the GDB nexti command; update display
window accordingly.

C-c C-f Execute until exit from the selected stack frame, like the GDB finish com-
mand.

M-c Continue execution of your program, like the GDB continue command.
Warning: In Emacs v19, this command is C-c C-p.

M-u Go up the number of frames indicated by the numeric argument (see section
“Numeric Arguments” in The gnu Emacs Manual), like the GDB up command.
Warning: In Emacs v19, this command is C-c C-u.

M-d Go down the number of frames indicated by the numeric argument, like the
GDB down command.
Warning: In Emacs v19, this command is C-c C-d.

C-x & Read the number where the cursor is positioned, and insert it at the end of
the GDB I/O buffer. For example, if you wish to disassemble code around an
address that was displayed earlier, type disassemble; then move the cursor to
the address display, and pick up the argument for disassemble by typing C-x

&.
You can customize this further by defining elements of the list gdb-print-
command; once it is defined, you can format or otherwise process numbers picked
up by C-x & before they are inserted. A numeric argument to C-x & indicates
that you wish special formatting, and also acts as an index to pick an element
of the list. If the list element is a string, the number to be inserted is format-
ted using the Emacs function format; otherwise the number is passed as an
argument to the corresponding list element.

In any source file, the Emacs command C-x SPC (gdb-break) tells GDB to set a break-
point on the source line point is on.

If you accidentally delete the source-display buffer, an easy way to get it back is to type
the command f in the GDB buffer, to request a frame display; when you run under Emacs,
this recreates the source buffer if necessary to show you the context of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the
source files in the usual way. You can edit the files with these buffers if you wish; but keep
in mind that GDB communicates with Emacs in terms of line numbers. If you add or delete
lines from the text, the line numbers that GDB knows cease to correspond properly with
the code.

Chapter 23: GDB Annotations 185

23 GDB Annotations

This chapter describes annotations in GDB. Annotations are designed to interface GDB
to graphical user interfaces or other similar programs which want to interact with GDB at
a relatively high level.

23.1 What is an Annotation?

To produce annotations, start GDB with the --annotate=2 option.
Annotations start with a newline character, two ‘control-z’ characters, and the name

of the annotation. If there is no additional information associated with this annotation,
the name of the annotation is followed immediately by a newline. If there is additional
information, the name of the annotation is followed by a space, the additional information,
and a newline. The additional information cannot contain newline characters.

Any output not beginning with a newline and two ‘control-z’ characters denotes literal
output from GDB. Currently there is no need for GDB to output a newline followed by two
‘control-z’ characters, but if there was such a need, the annotations could be extended
with an ‘escape’ annotation which means those three characters as output.

A simple example of starting up GDB with annotations is:
$ gdb --annotate=2
GNU GDB 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty"
for details.
This GDB was configured as "sparc-sun-sunos4.1.3"

^Z^Zpre-prompt
(gdb)
^Z^Zprompt
quit

^Z^Zpost-prompt
$

Here ‘quit’ is input to GDB; the rest is output from GDB. The three lines beginning
‘^Z^Z’ (where ‘^Z’ denotes a ‘control-z’ character) are annotations; the rest is output from
GDB.

23.2 The Server Prefix

To issue a command to GDB without affecting certain aspects of the state which is
seen by users, prefix it with ‘server ’. This means that this command will not affect the
command history, nor will it affect GDB’s notion of which command to repeat if 〈RET〉 is
pressed on a line by itself.

186 Debugging with GDB

The server prefix does not affect the recording of values into the value history; to print
a value without recording it into the value history, use the output command instead of the
print command.

23.3 Values

When a value is printed in various contexts, GDB uses annotations to delimit the value
from the surrounding text.

If a value is printed using print and added to the value history, the annotation looks
like

^Z^Zvalue-history-begin history-number value-flags
history-string
^Z^Zvalue-history-value
the-value
^Z^Zvalue-history-end

where history-number is the number it is getting in the value history, history-string is
a string, such as ‘$5 = ’, which introduces the value to the user, the-value is the output
corresponding to the value itself, and value-flags is ‘*’ for a value which can be dereferenced
and ‘-’ for a value which cannot.

If the value is not added to the value history (it is an invalid float or it is printed with
the output command), the annotation is similar:

^Z^Zvalue-begin value-flags
the-value
^Z^Zvalue-end

When GDB prints an argument to a function (for example, in the output from the
backtrace command), it annotates it as follows:

^Z^Zarg-begin
argument-name
^Z^Zarg-name-end
separator-string
^Z^Zarg-value value-flags
the-value
^Z^Zarg-end

where argument-name is the name of the argument, separator-string is text which separates
the name from the value for the user’s benefit (such as ‘=’), and value-flags and the-value
have the same meanings as in a value-history-begin annotation.

When printing a structure, GDB annotates it as follows:

^Z^Zfield-begin value-flags
field-name
^Z^Zfield-name-end
separator-string
^Z^Zfield-value
the-value
^Z^Zfield-end

Chapter 23: GDB Annotations 187

where field-name is the name of the field, separator-string is text which separates the name
from the value for the user’s benefit (such as ‘=’), and value-flags and the-value have the
same meanings as in a value-history-begin annotation.

When printing an array, GDB annotates it as follows:
^Z^Zarray-section-begin array-index value-flags

where array-index is the index of the first element being annotated and value-flags has the
same meaning as in a value-history-begin annotation. This is followed by any number
of elements, where is element can be either a single element:

‘,’ whitespace ; omitted for the first element
the-value
^Z^Zelt

or a repeated element
‘,’ whitespace ; omitted for the first element
the-value
^Z^Zelt-rep number-of-repititions
repetition-string
^Z^Zelt-rep-end

In both cases, the-value is the output for the value of the element and whitespace can
contain spaces, tabs, and newlines. In the repeated case, number-of-repititons is the number
of consecutive array elements which contain that value, and repetition-string is a string
which is designed to convey to the user that repitition is being depicted.

Once all the array elements have been output, the array annotation is ended with
^Z^Zarray-section-end

23.4 Frames

Whenever GDB prints a frame, it annotates it. For example, this applies to frames
printed when GDB stops, output from commands such as backtrace or up, etc.

The frame annotation begins with
^Z^Zframe-begin level address
level-string

where level is the number of the frame (0 is the innermost frame, and other frames have
positive numbers), address is the address of the code executing in that frame, and level-
string is a string designed to convey the level to the user. address is in the form ‘0x’ followed
by one or more lowercase hex digits (note that this does not depend on the language). The
frame ends with

^Z^Zframe-end

Between these annotations is the main body of the frame, which can consist of
•

^Z^Zfunction-call
function-call-string

where function-call-string is text designed to convey to the user that this frame is
associated with a function call made by GDB to a function in the program being
debugged.

188 Debugging with GDB

•
^Z^Zsignal-handler-caller
signal-handler-caller-string

where signal-handler-caller-string is text designed to convey to the user that this frame
is associated with whatever mechanism is used by this operating system to call a signal
handler (it is the frame which calls the signal handler, not the frame for the signal
handler itself).

• A normal frame.

This can optionally (depending on whether this is thought of as interesting information
for the user to see) begin with

^Z^Zframe-address
address
^Z^Zframe-address-end
separator-string

where address is the address executing in the frame (the same address as in the frame-
begin annotation, but printed in a form which is intended for user consumption—in
particular, the syntax varies depending on the language), and separator-string is a
string intended to separate this address from what follows for the user’s benefit.

Then comes
^Z^Zframe-function-name
function-name
^Z^Zframe-args
arguments

where function-name is the name of the function executing in the frame, or ‘??’ if not
known, and arguments are the arguments to the frame, with parentheses around them
(each argument is annotated individually as well, see Section 23.3 [Value Annotations],
page 186).

If source information is available, a reference to it is then printed:
^Z^Zframe-source-begin
source-intro-string
^Z^Zframe-source-file
filename
^Z^Zframe-source-file-end
:
^Z^Zframe-source-line
line-number
^Z^Zframe-source-end

where source-intro-string separates for the user’s benefit the reference from the text
which precedes it, filename is the name of the source file, and line-number is the line
number within that file (the first line is line 1).

If GDB prints some information about where the frame is from (which library, which
load segment, etc.; currently only done on the RS/6000), it is annotated with

^Z^Zframe-where
information

Chapter 23: GDB Annotations 189

Then, if source is to actually be displayed for this frame (for example, this is not true
for output from the backtrace command), then a source annotation (see Section 23.11
[Source Annotations], page 192) is displayed. Unlike most annotations, this is output
instead of the normal text which would be output, not in addition.

23.5 Displays

When GDB is told to display something using the display command, the results of the
display are annotated:

^Z^Zdisplay-begin
number
^Z^Zdisplay-number-end
number-separator
^Z^Zdisplay-format
format
^Z^Zdisplay-expression
expression
^Z^Zdisplay-expression-end
expression-separator
^Z^Zdisplay-value
value
^Z^Zdisplay-end

where number is the number of the display, number-separator is intended to separate the
number from what follows for the user, format includes information such as the size, format,
or other information about how the value is being displayed, expression is the expression
being displayed, expression-separator is intended to separate the expression from the text
that follows for the user, and value is the actual value being displayed.

23.6 Annotation for GDB Input

When GDB prompts for input, it annotates this fact so it is possible to know when to
send output, when the output from a given command is over, etc.

Different kinds of input each have a different input type. Each input type has three
annotations: a pre- annotation, which denotes the beginning of any prompt which is being
output, a plain annotation, which denotes the end of the prompt, and then a post- anno-
tation which denotes the end of any echo which may (or may not) be associated with the
input. For example, the prompt input type features the following annotations:

^Z^Zpre-prompt
^Z^Zprompt
^Z^Zpost-prompt

The input types are

prompt When GDB is prompting for a command (the main GDB prompt).

commands When GDB prompts for a set of commands, like in the commands command.
The annotations are repeated for each command which is input.

190 Debugging with GDB

overload-choice
When GDB wants the user to select between various overloaded functions.

query When GDB wants the user to confirm a potentially dangerous operation.

prompt-for-continue
When GDB is asking the user to press return to continue. Note: Don’t expect
this to work well; instead use set height 0 to disable prompting. This is
because the counting of lines is buggy in the presence of annotations.

23.7 Errors

^Z^Zquit

This annotation occurs right before GDB responds to an interrupt.
^Z^Zerror

This annotation occurs right before GDB responds to an error.
Quit and error annotations indicate that any annotations which GDB was in the middle

of may end abruptly. For example, if a value-history-begin annotation is followed by a
error, one cannot expect to receive the matching value-history-end. One cannot expect
not to receive it either, however; an error annotation does not necessarily mean that GDB
is immediately returning all the way to the top level.

A quit or error annotation may be preceded by
^Z^Zerror-begin

Any output between that and the quit or error annotation is the error message.
Warning messages are not yet annotated.

23.8 Information on Breakpoints

The output from the info breakpoints command is annotated as follows:
^Z^Zbreakpoints-headers
header-entry
^Z^Zbreakpoints-table

where header-entry has the same syntax as an entry (see below) but instead of containing
data, it contains strings which are intended to convey the meaning of each field to the user.
This is followed by any number of entries. If a field does not apply for this entry, it is
omitted. Fields may contain trailing whitespace. Each entry consists of:

^Z^Zrecord
^Z^Zfield 0
number
^Z^Zfield 1
type
^Z^Zfield 2
disposition
^Z^Zfield 3
enable
^Z^Zfield 4

Chapter 23: GDB Annotations 191

address
^Z^Zfield 5
what
^Z^Zfield 6
frame
^Z^Zfield 7
condition
^Z^Zfield 8
ignore-count
^Z^Zfield 9
commands

Note that address is intended for user consumption—the syntax varies depending on the
language.

The output ends with
^Z^Zbreakpoints-table-end

23.9 Invalidation Notices

The following annotations say that certain pieces of state may have changed.

^Z^Zframes-invalid
The frames (for example, output from the backtrace command) may have
changed.

^Z^Zbreakpoints-invalid
The breakpoints may have changed. For example, the user just added or deleted
a breakpoint.

23.10 Running the Program

When the program starts executing due to a GDB command such as step or continue,
^Z^Zstarting

is output. When the program stops,
^Z^Zstopped

is output. Before the stopped annotation, a variety of annotations describe how the
program stopped.

^Z^Zexited exit-status
The program exited, and exit-status is the exit status (zero for successful exit,
otherwise nonzero).

^Z^Zsignalled
The program exited with a signal. After the ^Z^Zsignalled, the annotation
continues:

intro-text
^Z^Zsignal-name
name

192 Debugging with GDB

^Z^Zsignal-name-end
middle-text
^Z^Zsignal-string
string
^Z^Zsignal-string-end
end-text

where name is the name of the signal, such as SIGILL or SIGSEGV, and string is
the explanation of the signal, such as Illegal Instruction or Segmentation
fault. intro-text, middle-text, and end-text are for the user’s benefit and have
no particular format.

^Z^Zsignal
The syntax of this annotation is just like signalled, but GDB is just saying
that the program received the signal, not that it was terminated with it.

^Z^Zbreakpoint number
The program hit breakpoint number number.

^Z^Zwatchpoint number
The program hit watchpoint number number.

23.11 Displaying Source

The following annotation is used instead of displaying source code:
^Z^Zsource filename:line:character:middle:addr

where filename is an absolute file name indicating which source file, line is the line
number within that file (where 1 is the first line in the file), character is the character
position within the file (where 0 is the first character in the file) (for most debug formats
this will necessarily point to the beginning of a line), middle is ‘middle’ if addr is in the
middle of the line, or ‘beg’ if addr is at the beginning of the line, and addr is the address
in the target program associated with the source which is being displayed. addr is in the
form ‘0x’ followed by one or more lowercase hex digits (note that this does not depend on
the language).

23.12 Annotations We Might Want in the Future

- target-invalid
the target might have changed (registers, heap contents, or
execution status). For performance, we might eventually want
to hit ‘registers-invalid’ and ‘all-registers-invalid’ with
greater precision

- systematic annotation for set/show parameters (including
invalidation notices).

- similarly, ‘info’ returns a list of candidates for invalidation
notices.

Chapter 24: The gdb/mi Interface 193

24 The gdb/mi Interface

Function and Purpose

gdb/mi is a line based machine oriented text interface to GDB. It is specifically intended
to support the development of systems which use the debugger as just one small component
of a larger system.

This chapter is a specification of the gdb/mi interface. It is written in the form of a
reference manual.

Note that gdb/mi is still under construction, so some of the features described below
are incomplete and subject to change.

Notation and Terminology

This chapter uses the following notation:

• | separates two alternatives.
• [something] indicates that something is optional: it may or may not be given.
• (group)* means that group inside the parentheses may repeat zero or more times.
• (group)+ means that group inside the parentheses may repeat one or more times.
• "string" means a literal string.

Acknowledgments

In alphabetic order: Andrew Cagney, Fernando Nasser, Stan Shebs and Elena Zannoni.

24.1 gdb/mi Command Syntax

24.1.1 gdb/mi Input Syntax

command 7→
cli-command | mi-command

cli-command 7→
[token] cli-command nl, where cli-command is any existing GDB CLI com-
mand.

mi-command 7→
[token] "-" operation (" " option)* [" --"] (" " parameter)* nl

token 7→ "any sequence of digits"

option 7→ "-" parameter [" " parameter]

parameter 7→
non-blank-sequence | c-string

194 Debugging with GDB

operation 7→
any of the operations described in this chapter

non-blank-sequence 7→
anything, provided it doesn’t contain special characters such as "-", nl, """ and
of course " "

c-string 7→
""" seven-bit-iso-c-string-content """

nl 7→ CR | CR-LF

Notes:
• The CLI commands are still handled by the mi interpreter; their output is described

below.
• The token, when present, is passed back when the command finishes.
• Some mi commands accept optional arguments as part of the parameter list. Each

option is identified by a leading ‘-’ (dash) and may be followed by an optional argument
parameter. Options occur first in the parameter list and can be delimited from normal
parameters using ‘--’ (this is useful when some parameters begin with a dash).

Pragmatics:
• We want easy access to the existing CLI syntax (for debugging).
• We want it to be easy to spot a mi operation.

24.1.2 gdb/mi Output Syntax

The output from gdb/mi consists of zero or more out-of-band records followed, option-
ally, by a single result record. This result record is for the most recent command. The
sequence of output records is terminated by ‘(gdb)’.

If an input command was prefixed with a token then the corresponding output for that
command will also be prefixed by that same token.

output 7→ (out-of-band-record)* [result-record] "(gdb)" nl

result-record 7→
[token] "^" result-class ("," result)* nl

out-of-band-record 7→
async-record | stream-record

async-record 7→
exec-async-output | status-async-output | notify-async-output

exec-async-output 7→
[token] "*" async-output

status-async-output 7→
[token] "+" async-output

notify-async-output 7→
[token] "=" async-output

Chapter 24: The gdb/mi Interface 195

async-output 7→
async-class ("," result)* nl

result-class 7→
"done" | "running" | "connected" | "error" | "exit"

async-class 7→
"stopped" | others (where others will be added depending on the needs—this
is still in development).

result 7→ variable "=" value

variable 7→
string

value 7→ const | tuple | list

const 7→ c-string

tuple 7→ "{}" | "{" result ("," result)* "}"

list 7→ "[]" | "[" value ("," value)* "]" | "[" result ("," result)* "]"

stream-record 7→
console-stream-output | target-stream-output | log-stream-output

console-stream-output 7→
"~" c-string

target-stream-output 7→
"@" c-string

log-stream-output 7→
"&" c-string

nl 7→ CR | CR-LF

token 7→ any sequence of digits.

Notes:
• All output sequences end in a single line containing a period.
• The token is from the corresponding request. If an execution command is interrupted

by the ‘-exec-interrupt’ command, the token associated with the ‘*stopped’ message
is the one of the original execution command, not the one of the interrupt command.

• status-async-output contains on-going status information about the progress of a slow
operation. It can be discarded. All status output is prefixed by ‘+’.

• exec-async-output contains asynchronous state change on the target (stopped, started,
disappeared). All async output is prefixed by ‘*’.

• notify-async-output contains supplementary information that the client should handle
(e.g., a new breakpoint information). All notify output is prefixed by ‘=’.

• console-stream-output is output that should be displayed as is in the console. It is the
textual response to a CLI command. All the console output is prefixed by ‘~’.

• target-stream-output is the output produced by the target program. All the target
output is prefixed by ‘@’.

196 Debugging with GDB

• log-stream-output is output text coming from GDB’s internals, for instance messages
that should be displayed as part of an error log. All the log output is prefixed by ‘&’.

• New gdb/mi commands should only output lists containing values.

See Section 24.3.2 [gdb/mi Stream Records], page 197, for more details about the various
output records.

24.1.3 Simple Examples of gdb/mi Interaction

This subsection presents several simple examples of interaction using the gdb/mi inter-
face. In these examples, ‘->’ means that the following line is passed to gdb/mi as input,
while ‘<-’ means the output received from gdb/mi.

Target Stop

Here’s an example of stopping the inferior process:

-> -stop
<- (gdb)

and later:

<- *stop,reason="stop",address="0x123",source="a.c:123"
<- (gdb)

Simple CLI Command

Here’s an example of a simple CLI command being passed through gdb/mi and on to
the CLI.

-> print 1+2
<- &"print 1+2\n"
<- ~"$1 = 3\n"
<- ^done
<- (gdb)

Command With Side Effects

-> -symbol-file xyz.exe
<- *breakpoint,nr="3",address="0x123",source="a.c:123"
<- (gdb)

A Bad Command

Here’s what happens if you pass a non-existent command:

-> -rubbish
<- ^error,msg="Undefined MI command: rubbish"
<- (gdb)

Chapter 24: The gdb/mi Interface 197

24.2 gdb/mi Compatibility with CLI

To help users familiar with GDB’s existing CLI interface, gdb/mi accepts existing CLI
commands. As specified by the syntax, such commands can be directly entered into the
gdb/mi interface and GDB will respond.

This mechanism is provided as an aid to developers of gdb/mi clients and not as a
reliable interface into the CLI. Since the command is being interpreteted in an environment
that assumes gdb/mi behaviour, the exact output of such commands is likely to end up
being an un-supported hybrid of gdb/mi and CLI output.

24.3 gdb/mi Output Records

24.3.1 gdb/mi Result Records

In addition to a number of out-of-band notifications, the response to a gdb/mi command
includes one of the following result indications:

"^done" ["," results]
The synchronous operation was successful, results are the return values.

"^running"
The asynchronous operation was successfully started. The target is running.

"^error" "," c-string
The operation failed. The c-string contains the corresponding error message.

24.3.2 gdb/mi Stream Records

GDB internally maintains a number of output streams: the console, the target, and the
log. The output intended for each of these streams is funneled through the gdb/mi interface
using stream records.

Each stream record begins with a unique prefix character which identifies its stream (see
Section 24.1.2 [gdb/mi Output Syntax], page 194). In addition to the prefix, each stream
record contains a string-output. This is either raw text (with an implicit new line) or a
quoted C string (which does not contain an implicit newline).

"~" string-output
The console output stream contains text that should be displayed in the CLI
console window. It contains the textual responses to CLI commands.

"@" string-output
The target output stream contains any textual output from the running target.

"&" string-output
The log stream contains debugging messages being produced by GDB’s inter-
nals.

198 Debugging with GDB

24.3.3 gdb/mi Out-of-band Records

Out-of-band records are used to notify the gdb/mi client of additional changes that
have occurred. Those changes can either be a consequence of gdb/mi (e.g., a breakpoint
modified) or a result of target activity (e.g., target stopped).

The following is a preliminary list of possible out-of-band records.

"*" "stop"

24.4 gdb/mi Command Description Format

The remaining sections describe blocks of commands. Each block of commands is laid
out in a fashion similar to this section.

Note the the line breaks shown in the examples are here only for readability. They don’t
appear in the real output. Also note that the commands with a non-available example
(N.A.) are not yet implemented.

Motivation

The motivation for this collection of commands.

Introduction

A brief introduction to this collection of commands as a whole.

Commands

For each command in the block, the following is described:

Synopsis

-command args...

GDB Command

The corresponding GDB CLI command.

Result

Out-of-band

Notes

Example

Chapter 24: The gdb/mi Interface 199

24.5 gdb/mi Breakpoint table commands

This section documents gdb/mi commands for manipulating breakpoints.

The -break-after Command

Synopsis

-break-after number count

The breakpoint number number is not in effect until it has been hit count times. To see
how this is reflected in the output of the ‘-break-list’ command, see the description of
the ‘-break-list’ command below.

GDB Command

The corresponding GDB command is ‘ignore’.

Example

(gdb)
-break-insert main
^done,bkpt={number="1",addr="0x000100d0",file="hello.c",line="5"}
(gdb)
-break-after 1 3
~
^done
(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",times="0",
ignore="3"}]}
(gdb)

The -break-condition Command

Synopsis

-break-condition number expr

Breakpoint number will stop the program only if the condition in expr is true. The con-
dition becomes part of the ‘-break-list’ output (see the description of the ‘-break-list’
command below).

200 Debugging with GDB

GDB Command

The corresponding GDB command is ‘condition’.

Example

(gdb)
-break-condition 1 1
^done
(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",cond="1",
times="0",ignore="3"}]}
(gdb)

The -break-delete Command

Synopsis

-break-delete (breakpoint)+

Delete the breakpoint(s) whose number(s) are specified in the argument list. This is
obviously reflected in the breakpoint list.

GDB command

The corresponding GDB command is ‘delete’.

Example

(gdb)
-break-delete 1
^done
(gdb)
-break-list
^done,BreakpointTable={nr_rows="0",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],

Chapter 24: The gdb/mi Interface 201

body=[]}
(gdb)

The -break-disable Command

Synopsis

-break-disable (breakpoint)+

Disable the named breakpoint(s). The field ‘enabled’ in the break list is now set to ‘n’
for the named breakpoint(s).

GDB Command

The corresponding GDB command is ‘disable’.

Example

(gdb)
-break-disable 2
^done
(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="2",type="breakpoint",disp="keep",enabled="n",
addr="0x000100d0",func="main",file="hello.c",line="5",times="0"}]}
(gdb)

The -break-enable Command

Synopsis

-break-enable (breakpoint)+

Enable (previously disabled) breakpoint(s).

GDB Command

The corresponding GDB command is ‘enable’.

Example

(gdb)
-break-enable 2
^done

202 Debugging with GDB

(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",times="0"}]}
(gdb)

The -break-info Command

Synopsis

-break-info breakpoint

Get information about a single breakpoint.

GDB command

The corresponding GDB command is ‘info break breakpoint’.

Example

N.A.

The -break-insert Command

Synopsis

-break-insert [-t] [-h] [-r]
[-c condition] [-i ignore-count]
[-p thread] [line | addr]

If specified, line, can be one of:
• function
• filename:linenum
• filename:function
• *address

The possible optional parameters of this command are:

‘-t’ Insert a tempoary breakpoint.

‘-h’ Insert a hardware breakpoint.

‘-c condition’
Make the breakpoint conditional on condition.

Chapter 24: The gdb/mi Interface 203

‘-i ignore-count’
Initialize the ignore-count.

‘-r’ Insert a regular breakpoint in all the functions whose names match the given
regular expression. Other flags are not applicable to regular expresson.

Result

The result is in the form:
^done,bkptno="number",func="funcname",
file="filename",line="lineno"

where number is the GDB number for this breakpoint, funcname is the name of the function
where the breakpoint was inserted, filename is the name of the source file which contains
this function, and lineno is the source line number within that file.

Note: this format is open to change.

GDB Command

The corresponding GDB commands are ‘break’, ‘tbreak’, ‘hbreak’, ‘thbreak’, and
‘rbreak’.

Example

(gdb)
-break-insert main
^done,bkpt={number="1",addr="0x0001072c",file="recursive2.c",line="4"}
(gdb)
-break-insert -t foo
^done,bkpt={number="2",addr="0x00010774",file="recursive2.c",line="11"}
(gdb)
-break-list
^done,BreakpointTable={nr_rows="2",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x0001072c", func="main",file="recursive2.c",line="4",times="0"},
bkpt={number="2",type="breakpoint",disp="del",enabled="y",
addr="0x00010774",func="foo",file="recursive2.c",line="11",times="0"}]}
(gdb)
-break-insert -r foo.*
~int foo(int, int);
^done,bkpt={number="3",addr="0x00010774",file="recursive2.c",line="11"}
(gdb)

The -break-list Command

204 Debugging with GDB

Synopsis

-break-list

Displays the list of inserted breakpoints, showing the following fields:

‘Number’ number of the breakpoint

‘Type’ type of the breakpoint: ‘breakpoint’ or ‘watchpoint’

‘Disposition’
should the breakpoint be deleted or disabled when it is hit: ‘keep’ or ‘nokeep’

‘Enabled’ is the breakpoint enabled or no: ‘y’ or ‘n’

‘Address’ memory location at which the breakpoint is set

‘What’ logical location of the breakpoint, expressed by function name, file name, line
number

‘Times’ number of times the breakpoint has been hit

If there are no breakpoints or watchpoints, the BreakpointTable body field is an empty
list.

GDB Command

The corresponding GDB command is ‘info break’.

Example

(gdb)
-break-list
^done,BreakpointTable={nr_rows="2",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",times="0"},
bkpt={number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x00010114",func="foo",file="hello.c",line="13",times="0"}]}
(gdb)

Here’s an example of the result when there are no breakpoints:
(gdb)
-break-list
^done,BreakpointTable={nr_rows="0",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},

Chapter 24: The gdb/mi Interface 205

{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[]}
(gdb)

The -break-watch Command

Synopsis

-break-watch [-a | -r]

Create a watchpoint. With the ‘-a’ option it will create an access watchpoint, i.e. a
watchpoint that triggers either on a read from or on a write to the memory location. With
the ‘-r’ option, the watchpoint created is a read watchpoint, i.e. it will trigger only when
the memory location is accessed for reading. Without either of the options, the watchpoint
created is a regular watchpoint, i.e. it will trigger when the memory location is accessed
for writing. See Section 5.1.2 [Setting watchpoints], page 37.

Note that ‘-break-list’ will report a single list of watchpoints and breakpoints inserted.

GDB Command

The corresponding GDB commands are ‘watch’, ‘awatch’, and ‘rwatch’.

Example

Setting a watchpoint on a variable in the main function:
(gdb)
-break-watch x
^done,wpt={number="2",exp="x"}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-trigger",wpt={number="2",exp="x"},
value={old="-268439212",new="55"},
frame={func="main",args=[],file="recursive2.c",line="5"}
(gdb)

Setting a watchpoint on a variable local to a function. GDB will stop the program
execution twice: first for the variable changing value, then for the watchpoint going out of
scope.

(gdb)
-break-watch C
^done,wpt={number="5",exp="C"}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-trigger",
wpt={number="5",exp="C"},value={old="-276895068",new="3"},
frame={func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="13"}

206 Debugging with GDB

(gdb)
-exec-continue
^running
^done,reason="watchpoint-scope",wpnum="5",
frame={func="callee3",args=[{name="strarg",
value="0x11940 \"A string argument.\""}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="18"}
(gdb)

Listing breakpoints and watchpoints, at different points in the program execution. Note
that once the watchpoint goes out of scope, it is deleted.

(gdb)
-break-watch C
^done,wpt={number="2",exp="C"}
(gdb)
-break-list
^done,BreakpointTable={nr_rows="2",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"},
bkpt={number="2",type="watchpoint",disp="keep",
enabled="y",addr="",what="C",times="0"}]}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-trigger",wpt={number="2",exp="C"},
value={old="-276895068",new="3"},
frame={func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="13"}
(gdb)
-break-list
^done,BreakpointTable={nr_rows="2",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"},
bkpt={number="2",type="watchpoint",disp="keep",
enabled="y",addr="",what="C",times="-5"}]}
(gdb)

Chapter 24: The gdb/mi Interface 207

-exec-continue
^running
^done,reason="watchpoint-scope",wpnum="2",
frame={func="callee3",args=[{name="strarg",
value="0x11940 \"A string argument.\""}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="18"}
(gdb)
-break-list
^done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"}]}
(gdb)

24.6 gdb/mi Data Manipulation

This section describes the gdb/mi commands that manipulate data: examine memory
and registers, evaluate expressions, etc.

The -data-disassemble Command

Synopsis

-data-disassemble
[-s start-addr -e end-addr]

| [-f filename -l linenum [-n lines]]
-- mode

Where:

‘start-addr’
is the beginning address (or $pc)

‘end-addr’ is the end address

‘filename’ is the name of the file to disassemble

‘linenum’ is the line number to disassemble around

‘lines’ is the the number of disassembly lines to be produced. If it is -1, the whole
function will be disassembled, in case no end-addr is specified. If end-addr is
specified as a non-zero value, and lines is lower than the number of disassembly
lines between start-addr and end-addr, only lines lines are displayed; if lines
is higher than the number of lines between start-addr and end-addr, only the
lines up to end-addr are displayed.

208 Debugging with GDB

‘mode’ is either 0 (meaning only disassembly) or 1 (meaning mixed source and disas-
sembly).

Result

The output for each instruction is composed of four fields:
• Address
• Func-name
• Offset
• Instruction

Note that whatever included in the instruction field, is not manipulated directely by
gdb/mi, i.e. it is not possible to adjust its format.

GDB Command

There’s no direct mapping from this command to the CLI.

Example

Disassemble from the current value of $pc to $pc + 20:
(gdb)
-data-disassemble -s $pc -e "$pc + 20" -- 0
^done,
asm_insns=[
{address="0x000107c0",func-name="main",offset="4",
inst="mov 2, %o0"},
{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"},
{address="0x000107c8",func-name="main",offset="12",
inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"},
{address="0x000107cc",func-name="main",offset="16",
inst="sethi %hi(0x11800), %o2"},
{address="0x000107d0",func-name="main",offset="20",
inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"}]
(gdb)

Disassemble the whole main function. Line 32 is part of main.
-data-disassemble -f basics.c -l 32 -- 0
^done,asm_insns=[
{address="0x000107bc",func-name="main",offset="0",
inst="save %sp, -112, %sp"},
{address="0x000107c0",func-name="main",offset="4",
inst="mov 2, %o0"},
{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"},
[...]
{address="0x0001081c",func-name="main",offset="96",inst="ret "},
{address="0x00010820",func-name="main",offset="100",inst="restore "}]

Chapter 24: The gdb/mi Interface 209

(gdb)

Disassemble 3 instructions from the start of main:

(gdb)
-data-disassemble -f basics.c -l 32 -n 3 -- 0
^done,asm_insns=[
{address="0x000107bc",func-name="main",offset="0",
inst="save %sp, -112, %sp"},
{address="0x000107c0",func-name="main",offset="4",
inst="mov 2, %o0"},
{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"}]
(gdb)

Disassemble 3 instructions from the start of main in mixed mode:

(gdb)
-data-disassemble -f basics.c -l 32 -n 3 -- 1
^done,asm_insns=[
src_and_asm_line={line="31",
file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
testsuite/gdb.mi/basics.c",line_asm_insn=[

{address="0x000107bc",func-name="main",offset="0",
inst="save %sp, -112, %sp"}]},
src_and_asm_line={line="32",
file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
testsuite/gdb.mi/basics.c",line_asm_insn=[

{address="0x000107c0",func-name="main",offset="4",
inst="mov 2, %o0"},
{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"}]}]
(gdb)

The -data-evaluate-expression Command

Synopsis

-data-evaluate-expression expr

Evaluate expr as an expression. The expression could contain an inferior function call.
The function call will execute synchronously. If the expression contains spaces, it must be
enclosed in double quotes.

GDB Command

The corresponding GDB commands are ‘print’, ‘output’, and ‘call’. In gdbtk only,
there’s a corresponding ‘gdb_eval’ command.

210 Debugging with GDB

Example

In the following example, the numbers that precede the commands are the tokens de-
scribed in Section 24.1 [gdb/mi Command Syntax], page 193. Notice how gdb/mi returns
the same tokens in its output.

211-data-evaluate-expression A
211^done,value="1"
(gdb)
311-data-evaluate-expression &A
311^done,value="0xefffeb7c"
(gdb)
411-data-evaluate-expression A+3
411^done,value="4"
(gdb)
511-data-evaluate-expression "A + 3"
511^done,value="4"
(gdb)

The -data-list-changed-registers Command

Synopsis

-data-list-changed-registers

Display a list of the registers that have changed.

GDB Command

GDB doesn’t have a direct analog for this command; gdbtk has the corresponding com-
mand ‘gdb_changed_register_list’.

Example

On a PPC MBX board:
(gdb)
-exec-continue
^running

(gdb)
*stopped,reason="breakpoint-hit",bkptno="1",frame={func="main",
args=[],file="try.c",line="5"}
(gdb)
-data-list-changed-registers
^done,changed-registers=["0","1","2","4","5","6","7","8","9",
"10","11","13","14","15","16","17","18","19","20","21","22","23",
"24","25","26","27","28","30","31","64","65","66","67","69"]
(gdb)

The -data-list-register-names Command

Chapter 24: The gdb/mi Interface 211

Synopsis

-data-list-register-names [(regno)+]

Show a list of register names for the current target. If no arguments are given, it shows a
list of the names of all the registers. If integer numbers are given as arguments, it will print
a list of the names of the registers corresponding to the arguments. To ensure consistency
between a register name and its number, the output list may include empty register names.

GDB Command

GDB does not have a command which corresponds to ‘-data-list-register-names’.
In gdbtk there is a corresponding command ‘gdb_regnames’.

Example

For the PPC MBX board:
(gdb)
-data-list-register-names
^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
"", "pc","ps","cr","lr","ctr","xer"]
(gdb)
-data-list-register-names 1 2 3
^done,register-names=["r1","r2","r3"]
(gdb)

The -data-list-register-values Command

Synopsis

-data-list-register-values fmt [(regno)*]

Display the registers’ contents. fmt is the format according to which the registers’
contents are to be returned, followed by an optional list of numbers specifying the registers
to display. A missing list of numbers indicates that the contents of all the registers must
be returned.

Allowed formats for fmt are:

x Hexadecimal

o Octal

t Binary

d Decimal

r Raw

N Natural

212 Debugging with GDB

GDB Command

The corresponding GDB commands are ‘info reg’, ‘info all-reg’, and (in gdbtk)
‘gdb_fetch_registers’.

Example

For a PPC MBX board (note: line breaks are for readability only, they don’t appear in
the actual output):

(gdb)
-data-list-register-values r 64 65
^done,register-values=[{number="64",value="0xfe00a300"},
{number="65",value="0x00029002"}]
(gdb)
-data-list-register-values x
^done,register-values=[{number="0",value="0xfe0043c8"},
{number="1",value="0x3fff88"},{number="2",value="0xfffffffe"},
{number="3",value="0x0"},{number="4",value="0xa"},
{number="5",value="0x3fff68"},{number="6",value="0x3fff58"},
{number="7",value="0xfe011e98"},{number="8",value="0x2"},
{number="9",value="0xfa202820"},{number="10",value="0xfa202808"},
{number="11",value="0x1"},{number="12",value="0x0"},
{number="13",value="0x4544"},{number="14",value="0xffdfffff"},
{number="15",value="0xffffffff"},{number="16",value="0xfffffeff"},
{number="17",value="0xefffffed"},{number="18",value="0xfffffffe"},
{number="19",value="0xffffffff"},{number="20",value="0xffffffff"},
{number="21",value="0xffffffff"},{number="22",value="0xfffffff7"},
{number="23",value="0xffffffff"},{number="24",value="0xffffffff"},
{number="25",value="0xffffffff"},{number="26",value="0xfffffffb"},
{number="27",value="0xffffffff"},{number="28",value="0xf7bfffff"},
{number="29",value="0x0"},{number="30",value="0xfe010000"},
{number="31",value="0x0"},{number="32",value="0x0"},
{number="33",value="0x0"},{number="34",value="0x0"},
{number="35",value="0x0"},{number="36",value="0x0"},
{number="37",value="0x0"},{number="38",value="0x0"},
{number="39",value="0x0"},{number="40",value="0x0"},
{number="41",value="0x0"},{number="42",value="0x0"},
{number="43",value="0x0"},{number="44",value="0x0"},
{number="45",value="0x0"},{number="46",value="0x0"},
{number="47",value="0x0"},{number="48",value="0x0"},
{number="49",value="0x0"},{number="50",value="0x0"},
{number="51",value="0x0"},{number="52",value="0x0"},
{number="53",value="0x0"},{number="54",value="0x0"},
{number="55",value="0x0"},{number="56",value="0x0"},
{number="57",value="0x0"},{number="58",value="0x0"},
{number="59",value="0x0"},{number="60",value="0x0"},
{number="61",value="0x0"},{number="62",value="0x0"},
{number="63",value="0x0"},{number="64",value="0xfe00a300"},
{number="65",value="0x29002"},{number="66",value="0x202f04b5"},

Chapter 24: The gdb/mi Interface 213

{number="67",value="0xfe0043b0"},{number="68",value="0xfe00b3e4"},
{number="69",value="0x20002b03"}]
(gdb)

The -data-read-memory Command

Synopsis

-data-read-memory [-o byte-offset]
address word-format word-size
nr-rows nr-cols [aschar]

where:

‘address’ An expression specifying the address of the first memory word to be read.
Complex expressions containing embedded white space should be quoted using
the C convention.

‘word-format’
The format to be used to print the memory words. The notation is the same
as for GDB’s print command (see Section 8.4 [Output formats], page 66).

‘word-size’
The size of each memory word in bytes.

‘nr-rows’ The number of rows in the output table.

‘nr-cols’ The number of columns in the output table.

‘aschar’ If present, indicates that each row should include an ascii dump. The value
of aschar is used as a padding character when a byte is not a member of the
printable ascii character set (printable ascii characters are those whose code
is between 32 and 126, inclusively).

‘byte-offset’
An offset to add to the address before fetching memory.

This command displays memory contents as a table of nr-rows by nr-cols words, each
word being word-size bytes. In total, nr-rows * nr-cols * word-size bytes are read (returned
as ‘total-bytes’). Should less than the requested number of bytes be returned by the
target, the missing words are identified using ‘N/A’. The number of bytes read from the
target is returned in ‘nr-bytes’ and the starting address used to read memory in ‘addr’.

The address of the next/previous row or page is available in ‘next-row’ and ‘prev-row’,
‘next-page’ and ‘prev-page’.

GDB Command

The corresponding GDB command is ‘x’. gdbtk has ‘gdb_get_mem’ memory read com-
mand.

214 Debugging with GDB

Example

Read six bytes of memory starting at bytes+6 but then offset by -6 bytes. Format as
three rows of two columns. One byte per word. Display each word in hex.

(gdb)
9-data-read-memory -o -6 -- bytes+6 x 1 3 2
9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
prev-page="0x0000138a",memory=[
{addr="0x00001390",data=["0x00","0x01"]},
{addr="0x00001392",data=["0x02","0x03"]},
{addr="0x00001394",data=["0x04","0x05"]}]
(gdb)

Read two bytes of memory starting at address shorts + 64 and display as a single word
formatted in decimal.

(gdb)
5-data-read-memory shorts+64 d 2 1 1
5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
next-row="0x00001512",prev-row="0x0000150e",
next-page="0x00001512",prev-page="0x0000150e",memory=[
{addr="0x00001510",data=["128"]}]
(gdb)

Read thirty two bytes of memory starting at bytes+16 and format as eight rows of four
columns. Include a string encoding with ‘x’ used as the non-printable character.

(gdb)
4-data-read-memory bytes+16 x 1 8 4 x
4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
next-row="0x000013c0",prev-row="0x0000139c",
next-page="0x000013c0",prev-page="0x00001380",memory=[
{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"},
{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"},
{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"},
{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"},
{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"},
{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&’"},
{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"},
{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"}]
(gdb)

The -display-delete Command

Synopsis

-display-delete number

Delete the display number.

Chapter 24: The gdb/mi Interface 215

GDB Command

The corresponding GDB command is ‘delete display’.

Example

N.A.

The -display-disable Command

Synopsis

-display-disable number

Disable display number.

GDB Command

The corresponding GDB command is ‘disable display’.

Example

N.A.

The -display-enable Command

Synopsis

-display-enable number

Enable display number.

GDB Command

The corresponding GDB command is ‘enable display’.

Example

N.A.

The -display-insert Command

Synopsis

-display-insert expression

Display expression every time the program stops.

GDB Command

The corresponding GDB command is ‘display’.

216 Debugging with GDB

Example

N.A.

The -display-list Command

Synopsis

-display-list

List the displays. Do not show the current values.

GDB Command

The corresponding GDB command is ‘info display’.

Example

N.A.

The -environment-cd Command

Synopsis

-environment-cd pathdir

Set GDB’s working directory.

GDB Command

The corresponding GDB command is ‘cd’.

Example

(gdb)
-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
^done
(gdb)

The -environment-directory Command

Synopsis

-environment-directory pathdir

Add directory pathdir to beginning of search path for source files.

GDB Command

The corresponding GDB command is ‘dir’.

Chapter 24: The gdb/mi Interface 217

Example

(gdb)
-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
^done
(gdb)

The -environment-path Command

Synopsis

-environment-path (pathdir)+

Add directories pathdir to beginning of search path for object files.

GDB Command

The corresponding GDB command is ‘path’.

Example

(gdb)
-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb
^done
(gdb)

The -environment-pwd Command

Synopsis

-environment-pwd

Show the current working directory.

GDB command

The corresponding GDB command is ‘pwd’.

Example

(gdb)
-environment-pwd
~Working directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb.
^done
(gdb)

24.7 gdb/mi Program control

218 Debugging with GDB

Program termination

As a result of execution, the inferior program can run to completion, if it doesn’t en-
counter any breakpoints. In this case the output will include an exit code, if the program
has exited exceptionally.

Examples

Program exited normally:
(gdb)
-exec-run
^running
(gdb)
x = 55
*stopped,reason="exited-normally"
(gdb)

Program exited exceptionally:
(gdb)
-exec-run
^running
(gdb)
x = 55
*stopped,reason="exited",exit-code="01"
(gdb)

Another way the program can terminate is if it receives a signal such as SIGINT. In this
case, gdb/mi displays this:

(gdb)
*stopped,reason="exited-signalled",signal-name="SIGINT",
signal-meaning="Interrupt"

The -exec-abort Command

Synopsis

-exec-abort

Kill the inferior running program.

GDB Command

The corresponding GDB command is ‘kill’.

Example

N.A.

The -exec-arguments Command

Chapter 24: The gdb/mi Interface 219

Synopsis

-exec-arguments args

Set the inferior program arguments, to be used in the next ‘-exec-run’.

GDB Command

The corresponding GDB command is ‘set args’.

Example

Don’t have one around.

The -exec-continue Command

Synopsis

-exec-continue

Asynchronous command. Resumes the execution of the inferior program until a break-
point is encountered, or until the inferior exits.

GDB Command

The corresponding GDB corresponding is ‘continue’.

Example

-exec-continue
^running
(gdb)
@Hello world
*stopped,reason="breakpoint-hit",bkptno="2",frame={func="foo",args=[],
file="hello.c",line="13"}
(gdb)

The -exec-finish Command

Synopsis

-exec-finish

Asynchronous command. Resumes the execution of the inferior program until the current
function is exited. Displays the results returned by the function.

GDB Command

The corresponding GDB command is ‘finish’.

220 Debugging with GDB

Example

Function returning void.
-exec-finish
^running
(gdb)
@hello from foo
*stopped,reason="function-finished",frame={func="main",args=[],
file="hello.c",line="7"}
(gdb)

Function returning other than void. The name of the internal GDB variable storing the
result is printed, together with the value itself.

-exec-finish
^running
(gdb)
*stopped,reason="function-finished",frame={addr="0x000107b0",func="foo",
args=[{name="a",value="1"],{name="b",value="9"}},
file="recursive2.c",line="14"},
gdb-result-var="$1",return-value="0"
(gdb)

The -exec-interrupt Command

Synopsis

-exec-interrupt

Asynchronous command. Interrupts the background execution of the target. Note how
the token associated with the stop message is the one for the execution command that has
been interrupted. The token for the interrupt itself only appears in the ‘^done’ output. If
the user is trying to interrupt a non-running program, an error message will be printed.

GDB Command

The corresponding GDB command is ‘interrupt’.

Example

(gdb)
111-exec-continue
111^running

(gdb)
222-exec-interrupt
222^done
(gdb)
111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
frame={addr="0x00010140",func="foo",args=[],file="try.c",line="13"}
(gdb)

Chapter 24: The gdb/mi Interface 221

(gdb)
-exec-interrupt
^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
(gdb)

The -exec-next Command

Synopsis

-exec-next

Asynchronous command. Resumes execution of the inferior program, stopping when the
beginning of the next source line is reached.

GDB Command

The corresponding GDB command is ‘next’.

Example

-exec-next
^running
(gdb)
*stopped,reason="end-stepping-range",line="8",file="hello.c"
(gdb)

The -exec-next-instruction Command

Synopsis

-exec-next-instruction

Asynchronous command. Executes one machine instruction. If the instruction is a
function call continues until the function returns. If the program stops at an instruction in
the middle of a source line, the address will be printed as well.

GDB Command

The corresponding GDB command is ‘nexti’.

Example

(gdb)
-exec-next-instruction
^running

(gdb)
*stopped,reason="end-stepping-range",
addr="0x000100d4",line="5",file="hello.c"
(gdb)

222 Debugging with GDB

The -exec-return Command

Synopsis

-exec-return

Makes current function return immediately. Doesn’t execute the inferior. Displays the
new current frame.

GDB Command

The corresponding GDB command is ‘return’.

Example

(gdb)
200-break-insert callee4
200^done,bkpt={number="1",addr="0x00010734",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"}
(gdb)
000-exec-run
000^running
(gdb)
000*stopped,reason="breakpoint-hit",bkptno="1",
frame={func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"}
(gdb)
205-break-delete
205^done
(gdb)
111-exec-return
111^done,frame={level="0 ",func="callee3",
args=[{name="strarg",
value="0x11940 \"A string argument.\""}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="18"}
(gdb)

The -exec-run Command

Synopsis

-exec-run

Asynchronous command. Starts execution of the inferior from the beginning. The
inferior executes until either a breakpoint is encountered or the program exits.

GDB Command

The corresponding GDB command is ‘run’.

Chapter 24: The gdb/mi Interface 223

Example

(gdb)
-break-insert main
^done,bkpt={number="1",addr="0x0001072c",file="recursive2.c",line="4"}
(gdb)
-exec-run
^running
(gdb)
*stopped,reason="breakpoint-hit",bkptno="1",
frame={func="main",args=[],file="recursive2.c",line="4"}
(gdb)

The -exec-show-arguments Command

Synopsis

-exec-show-arguments

Print the arguments of the program.

GDB Command

The corresponding GDB command is ‘show args’.

Example

N.A.

The -exec-step Command

Synopsis

-exec-step

Asynchronous command. Resumes execution of the inferior program, stopping when the
beginning of the next source line is reached, if the next source line is not a function call. If
it is, stop at the first instruction of the called function.

GDB Command

The corresponding GDB command is ‘step’.

Example

Stepping into a function:
-exec-step
^running
(gdb)
*stopped,reason="end-stepping-range",

224 Debugging with GDB

frame={func="foo",args=[{name="a",value="10"},
{name="b",value="0"}],file="recursive2.c",line="11"}
(gdb)

Regular stepping:
-exec-step
^running
(gdb)
*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
(gdb)

The -exec-step-instruction Command

Synopsis

-exec-step-instruction

Asynchronous command. Resumes the inferior which executes one machine instruction.
The output, once GDB has stopped, will vary depending on whether we have stopped in
the middle of a source line or not. In the former case, the address at which the program
stopped will be printed as well.

GDB Command

The corresponding GDB command is ‘stepi’.

Example

(gdb)
-exec-step-instruction
^running

(gdb)
*stopped,reason="end-stepping-range",
frame={func="foo",args=[],file="try.c",line="10"}
(gdb)
-exec-step-instruction
^running

(gdb)
*stopped,reason="end-stepping-range",
frame={addr="0x000100f4",func="foo",args=[],file="try.c",line="10"}
(gdb)

The -exec-until Command

Synopsis

-exec-until [location]

Chapter 24: The gdb/mi Interface 225

Asynchronous command. Executes the inferior until the location specified in the argu-
ment is reached. If there is no argument, the inferior executes until a source line greater than
the current one is reached. The reason for stopping in this case will be ‘location-reached’.

GDB Command

The corresponding GDB command is ‘until’.

Example

(gdb)
-exec-until recursive2.c:6
^running
(gdb)
x = 55
*stopped,reason="location-reached",frame={func="main",args=[],
file="recursive2.c",line="6"}
(gdb)

The -file-exec-and-symbols Command

Synopsis

-file-exec-and-symbols file

Specify the executable file to be debugged. This file is the one from which the symbol
table is also read. If no file is specified, the command clears the executable and symbol
information. If breakpoints are set when using this command with no arguments, GDB will
produce error messages. Otherwise, no output is produced, except a completion notification.

GDB Command

The corresponding GDB command is ‘file’.

Example

(gdb)
-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)

The -file-exec-file Command

Synopsis

-file-exec-file file

Specify the executable file to be debugged. Unlike ‘-file-exec-and-symbols’, the sym-
bol table is not read from this file. If used without argument, GDB clears the information
about the executable file. No output is produced, except a completion notification.

226 Debugging with GDB

GDB Command

The corresponding GDB command is ‘exec-file’.

Example

(gdb)
-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)

The -file-list-exec-sections Command

Synopsis

-file-list-exec-sections

List the sections of the current executable file.

GDB Command

The GDB command ‘info file’ shows, among the rest, the same information as this
command. gdbtk has a corresponding command ‘gdb_load_info’.

Example

N.A.

The -file-list-exec-source-files Command

Synopsis

-file-list-exec-source-files

List the source files for the current executable.

GDB Command

There’s no GDB command which directly corresponds to this one. gdbtk has an analo-
gous command ‘gdb_listfiles’.

Example

N.A.

The -file-list-shared-libraries Command

Synopsis

-file-list-shared-libraries

List the shared libraries in the program.

Chapter 24: The gdb/mi Interface 227

GDB Command

The corresponding GDB command is ‘info shared’.

Example

N.A.

The -file-list-symbol-files Command

Synopsis

-file-list-symbol-files

List symbol files.

GDB Command

The corresponding GDB command is ‘info file’ (part of it).

Example

N.A.

The -file-symbol-file Command

Synopsis

-file-symbol-file file

Read symbol table info from the specified file argument. When used without arguments,
clears GDB’s symbol table info. No output is produced, except for a completion notification.

GDB Command

The corresponding GDB command is ‘symbol-file’.

Example

(gdb)
-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)

24.8 Miscellaneous GDB commands in gdb/mi

The -gdb-exit Command

228 Debugging with GDB

Synopsis

-gdb-exit

Exit GDB immediately.

GDB Command

Approximately corresponds to ‘quit’.

Example

(gdb)
-gdb-exit

The -gdb-set Command

Synopsis

-gdb-set

Set an internal GDB variable.

GDB Command

The corresponding GDB command is ‘set’.

Example

(gdb)
-gdb-set $foo=3
^done
(gdb)

The -gdb-show Command

Synopsis

-gdb-show

Show the current value of a GDB variable.

GDB command

The corresponding GDB command is ‘show’.

Example

(gdb)
-gdb-show annotate
^done,value="0"
(gdb)

Chapter 24: The gdb/mi Interface 229

The -gdb-version Command

Synopsis

-gdb-version

Show version information for GDB. Used mostly in testing.

GDB Command

There’s no equivalent GDB command. GDB by default shows this information when
you start an interactive session.

Example

(gdb)
-gdb-version
~GNU gdb 5.2.1
~Copyright 2000 Free Software Foundation, Inc.
~GDB is free software, covered by the GNU General Public License, and
~you are welcome to change it and/or distribute copies of it under
~ certain conditions.
~Type "show copying" to see the conditions.
~There is absolutely no warranty for GDB. Type "show warranty" for
~ details.
~This GDB was configured as
"--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
^done
(gdb)

24.9 gdb/mi Stack Manipulation Commands

The -stack-info-frame Command

Synopsis

-stack-info-frame

Get info on the current frame.

GDB Command

The corresponding GDB command is ‘info frame’ or ‘frame’ (without arguments).

Example

N.A.

The -stack-info-depth Command

230 Debugging with GDB

Synopsis

-stack-info-depth [max-depth]

Return the depth of the stack. If the integer argument max-depth is specified, do not
count beyond max-depth frames.

GDB Command

There’s no equivalent GDB command.

Example

For a stack with frame levels 0 through 11:
(gdb)
-stack-info-depth
^done,depth="12"
(gdb)
-stack-info-depth 4
^done,depth="4"
(gdb)
-stack-info-depth 12
^done,depth="12"
(gdb)
-stack-info-depth 11
^done,depth="11"
(gdb)
-stack-info-depth 13
^done,depth="12"
(gdb)

The -stack-list-arguments Command

Synopsis

-stack-list-arguments show-values
[low-frame high-frame]

Display a list of the arguments for the frames between low-frame and high-frame (inclu-
sive). If low-frame and high-frame are not provided, list the arguments for the whole call
stack.

The show-values argument must have a value of 0 or 1. A value of 0 means that only
the names of the arguments are listed, a value of 1 means that both names and values of
the arguments are printed.

GDB Command

GDB does not have an equivalent command. gdbtk has a ‘gdb_get_args’ command
which partially overlaps with the functionality of ‘-stack-list-arguments’.

Chapter 24: The gdb/mi Interface 231

Example

(gdb)
-stack-list-frames
^done,
stack=[
frame={level="0 ",addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"},
frame={level="1 ",addr="0x0001076c",func="callee3",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="17"},
frame={level="2 ",addr="0x0001078c",func="callee2",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="22"},
frame={level="3 ",addr="0x000107b4",func="callee1",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="27"},
frame={level="4 ",addr="0x000107e0",func="main",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="32"}]
(gdb)
-stack-list-arguments 0
^done,
stack-args=[
frame={level="0",args=[]},
frame={level="1",args=[name="strarg"]},
frame={level="2",args=[name="intarg",name="strarg"]},
frame={level="3",args=[name="intarg",name="strarg",name="fltarg"]},
frame={level="4",args=[]}]
(gdb)
-stack-list-arguments 1
^done,
stack-args=[
frame={level="0",args=[]},
frame={level="1",
args=[{name="strarg",value="0x11940 \"A string argument.\""}]},
frame={level="2",args=[
{name="intarg",value="2"},
{name="strarg",value="0x11940 \"A string argument.\""}]},
{frame={level="3",args=[
{name="intarg",value="2"},
{name="strarg",value="0x11940 \"A string argument.\""},
{name="fltarg",value="3.5"}]},
frame={level="4",args=[]}]
(gdb)
-stack-list-arguments 0 2 2
^done,stack-args=[frame={level="2",args=[name="intarg",name="strarg"]}]
(gdb)
-stack-list-arguments 1 2 2
^done,stack-args=[frame={level="2",
args=[{name="intarg",value="2"},
{name="strarg",value="0x11940 \"A string argument.\""}]}]
(gdb)

232 Debugging with GDB

The -stack-list-frames Command

Synopsis

-stack-list-frames [low-frame high-frame]

List the frames currently on the stack. For each frame it displays the following info:

‘level’ The frame number, 0 being the topmost frame, i.e. the innermost function.

‘addr’ The $pc value for that frame.

‘func’ Function name.

‘file’ File name of the source file where the function lives.

‘line’ Line number corresponding to the $pc.

If invoked without arguments, this command prints a backtrace for the whole stack. If
given two integer arguments, it shows the frames whose levels are between the two arguments
(inclusive). If the two arguments are equal, it shows the single frame at the corresponding
level.

GDB Command

The corresponding GDB commands are ‘backtrace’ and ‘where’.

Example

Full stack backtrace:
(gdb)
-stack-list-frames
^done,stack=
[frame={level="0 ",addr="0x0001076c",func="foo",

file="recursive2.c",line="11"},
frame={level="1 ",addr="0x000107a4",func="foo",

file="recursive2.c",line="14"},
frame={level="2 ",addr="0x000107a4",func="foo",

file="recursive2.c",line="14"},
frame={level="3 ",addr="0x000107a4",func="foo",

file="recursive2.c",line="14"},
frame={level="4 ",addr="0x000107a4",func="foo",

file="recursive2.c",line="14"},
frame={level="5 ",addr="0x000107a4",func="foo",

file="recursive2.c",line="14"},
frame={level="6 ",addr="0x000107a4",func="foo",

file="recursive2.c",line="14"},
frame={level="7 ",addr="0x000107a4",func="foo",

file="recursive2.c",line="14"},
frame={level="8 ",addr="0x000107a4",func="foo",

file="recursive2.c",line="14"},
frame={level="9 ",addr="0x000107a4",func="foo",

Chapter 24: The gdb/mi Interface 233

file="recursive2.c",line="14"},
frame={level="10",addr="0x000107a4",func="foo",

file="recursive2.c",line="14"},
frame={level="11",addr="0x00010738",func="main",

file="recursive2.c",line="4"}]
(gdb)

Show frames between low frame and high frame:
(gdb)
-stack-list-frames 3 5
^done,stack=
[frame={level="3 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},

frame={level="4 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"},

frame={level="5 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"}]

(gdb)

Show a single frame:
(gdb)
-stack-list-frames 3 3
^done,stack=
[frame={level="3 ",addr="0x000107a4",func="foo",
file="recursive2.c",line="14"}]

(gdb)

The -stack-list-locals Command

Synopsis

-stack-list-locals print-values

Display the local variable names for the current frame. With an argument of 0 prints
only the names of the variables, with argument of 1 prints also their values.

GDB Command

‘info locals’ in GDB, ‘gdb_get_locals’ in gdbtk.

Example

(gdb)
-stack-list-locals 0
^done,locals=[name="A",name="B",name="C"]
(gdb)
-stack-list-locals 1
^done,locals=[{name="A",value="1"},{name="B",value="2"},
{name="C",value="3"}]

(gdb)

234 Debugging with GDB

The -stack-select-frame Command

Synopsis

-stack-select-frame framenum

Change the current frame. Select a different frame framenum on the stack.

GDB Command

The corresponding GDB commands are ‘frame’, ‘up’, ‘down’, ‘select-frame’,
‘up-silent’, and ‘down-silent’.

Example

(gdb)
-stack-select-frame 2
^done
(gdb)

24.10 gdb/mi Symbol Query Commands

The -symbol-info-address Command

Synopsis

-symbol-info-address symbol

Describe where symbol is stored.

GDB Command

The corresponding GDB command is ‘info address’.

Example

N.A.

The -symbol-info-file Command

Synopsis

-symbol-info-file

Show the file for the symbol.

GDB Command

There’s no equivalent GDB command. gdbtk has ‘gdb_find_file’.

Chapter 24: The gdb/mi Interface 235

Example

N.A.

The -symbol-info-function Command

Synopsis

-symbol-info-function

Show which function the symbol lives in.

GDB Command

‘gdb_get_function’ in gdbtk.

Example

N.A.

The -symbol-info-line Command

Synopsis

-symbol-info-line

Show the core addresses of the code for a source line.

GDB Command

The corresponding GDB comamnd is ‘info line’. gdbtk has the ‘gdb_get_line’ and
‘gdb_get_file’ commands.

Example

N.A.

The -symbol-info-symbol Command

Synopsis

-symbol-info-symbol addr

Describe what symbol is at location addr.

GDB Command

The corresponding GDB command is ‘info symbol’.

Example

N.A.

236 Debugging with GDB

The -symbol-list-functions Command

Synopsis

-symbol-list-functions

List the functions in the executable.

GDB Command

‘info functions’ in GDB, ‘gdb_listfunc’ and ‘gdb_search’ in gdbtk.

Example

N.A.

The -symbol-list-types Command

Synopsis

-symbol-list-types

List all the type names.

GDB Command

The corresponding commands are ‘info types’ in GDB, ‘gdb_search’ in gdbtk.

Example

N.A.

The -symbol-list-variables Command

Synopsis

-symbol-list-variables

List all the global and static variable names.

GDB Command

‘info variables’ in GDB, ‘gdb_search’ in gdbtk.

Example

N.A.

The -symbol-locate Command

Chapter 24: The gdb/mi Interface 237

Synopsis

-symbol-locate

GDB Command

‘gdb_loc’ in gdbtk.

Example

N.A.

The -symbol-type Command

Synopsis

-symbol-type variable

Show type of variable.

GDB Command

The corresponding GDB command is ‘ptype’, gdbtk has ‘gdb_obj_variable’.

Example

N.A.

24.11 gdb/mi Target Manipulation Commands

The -target-attach Command

Synopsis

-target-attach pid | file

Attach to a process pid or a file file outside of GDB.

GDB command

The corresponding GDB command is ‘attach’.

Example

N.A.

The -target-compare-sections Command

238 Debugging with GDB

Synopsis

-target-compare-sections [section]

Compare data of section section on target to the exec file. Without the argument, all
sections are compared.

GDB Command

The GDB equivalent is ‘compare-sections’.

Example

N.A.

The -target-detach Command

Synopsis

-target-detach

Disconnect from the remote target. There’s no output.

GDB command

The corresponding GDB command is ‘detach’.

Example

(gdb)
-target-detach
^done
(gdb)

The -target-download Command

Synopsis

-target-download

Loads the executable onto the remote target. It prints out an update message every half
second, which includes the fields:

‘section’ The name of the section.

‘section-sent’
The size of what has been sent so far for that section.

‘section-size’
The size of the section.

‘total-sent’
The total size of what was sent so far (the current and the previous sections).

Chapter 24: The gdb/mi Interface 239

‘total-size’
The size of the overall executable to download.

Each message is sent as status record (see Section 24.1.2 [gdb/mi Output Syntax], page 194).
In addition, it prints the name and size of the sections, as they are downloaded. These

messages include the following fields:

‘section’ The name of the section.

‘section-size’
The size of the section.

‘total-size’
The size of the overall executable to download.

At the end, a summary is printed.

GDB Command

The corresponding GDB command is ‘load’.

Example

Note: each status message appears on a single line. Here the messages have been broken
down so that they can fit onto a page.

(gdb)
-target-download
+download,{section=".text",section-size="6668",total-size="9880"}
+download,{section=".text",section-sent="512",section-size="6668",
total-sent="512",total-size="9880"}
+download,{section=".text",section-sent="1024",section-size="6668",
total-sent="1024",total-size="9880"}
+download,{section=".text",section-sent="1536",section-size="6668",
total-sent="1536",total-size="9880"}
+download,{section=".text",section-sent="2048",section-size="6668",
total-sent="2048",total-size="9880"}
+download,{section=".text",section-sent="2560",section-size="6668",
total-sent="2560",total-size="9880"}
+download,{section=".text",section-sent="3072",section-size="6668",
total-sent="3072",total-size="9880"}
+download,{section=".text",section-sent="3584",section-size="6668",
total-sent="3584",total-size="9880"}
+download,{section=".text",section-sent="4096",section-size="6668",
total-sent="4096",total-size="9880"}
+download,{section=".text",section-sent="4608",section-size="6668",
total-sent="4608",total-size="9880"}
+download,{section=".text",section-sent="5120",section-size="6668",
total-sent="5120",total-size="9880"}
+download,{section=".text",section-sent="5632",section-size="6668",
total-sent="5632",total-size="9880"}
+download,{section=".text",section-sent="6144",section-size="6668",

240 Debugging with GDB

total-sent="6144",total-size="9880"}
+download,{section=".text",section-sent="6656",section-size="6668",
total-sent="6656",total-size="9880"}
+download,{section=".init",section-size="28",total-size="9880"}
+download,{section=".fini",section-size="28",total-size="9880"}
+download,{section=".data",section-size="3156",total-size="9880"}
+download,{section=".data",section-sent="512",section-size="3156",
total-sent="7236",total-size="9880"}
+download,{section=".data",section-sent="1024",section-size="3156",
total-sent="7748",total-size="9880"}
+download,{section=".data",section-sent="1536",section-size="3156",
total-sent="8260",total-size="9880"}
+download,{section=".data",section-sent="2048",section-size="3156",
total-sent="8772",total-size="9880"}
+download,{section=".data",section-sent="2560",section-size="3156",
total-sent="9284",total-size="9880"}
+download,{section=".data",section-sent="3072",section-size="3156",
total-sent="9796",total-size="9880"}
^done,address="0x10004",load-size="9880",transfer-rate="6586",
write-rate="429"
(gdb)

The -target-exec-status Command

Synopsis

-target-exec-status

Provide information on the state of the target (whether it is running or not, for instance).

GDB Command

There’s no equivalent GDB command.

Example

N.A.

The -target-list-available-targets Command

Synopsis

-target-list-available-targets

List the possible targets to connect to.

GDB Command

The corresponding GDB command is ‘help target’.

Chapter 24: The gdb/mi Interface 241

Example

N.A.

The -target-list-current-targets Command

Synopsis

-target-list-current-targets

Describe the current target.

GDB Command

The corresponding information is printed by ‘info file’ (among other things).

Example

N.A.

The -target-list-parameters Command

Synopsis

-target-list-parameters

GDB Command

No equivalent.

Example

N.A.

The -target-select Command

Synopsis

-target-select type parameters . . .

Connect GDB to the remote target. This command takes two args:

‘type’ The type of target, for instance ‘async’, ‘remote’, etc.

‘parameters’
Device names, host names and the like. See Section 16.2 [Commands for man-
aging targets], page 135, for more details.

The output is a connection notification, followed by the address at which the target
program is, in the following form:

^connected,addr="address",func="function name",
args=[arg list]

242 Debugging with GDB

GDB Command

The corresponding GDB command is ‘target’.

Example

(gdb)
-target-select async /dev/ttya
^connected,addr="0xfe00a300",func="??",args=[]
(gdb)

24.12 gdb/mi Thread Commands

The -thread-info Command

Synopsis

-thread-info

GDB command

No equivalent.

Example

N.A.

The -thread-list-all-threads Command

Synopsis

-thread-list-all-threads

GDB Command

The equivalent GDB command is ‘info threads’.

Example

N.A.

The -thread-list-ids Command

Synopsis

-thread-list-ids

Produces a list of the currently known GDB thread ids. At the end of the list it also
prints the total number of such threads.

Chapter 24: The gdb/mi Interface 243

GDB Command

Part of ‘info threads’ supplies the same information.

Example

No threads present, besides the main process:
(gdb)
-thread-list-ids
^done,thread-ids={},number-of-threads="0"
(gdb)

Several threads:
(gdb)
-thread-list-ids
^done,thread-ids={thread-id="3",thread-id="2",thread-id="1"},
number-of-threads="3"
(gdb)

The -thread-select Command

Synopsis

-thread-select threadnum

Make threadnum the current thread. It prints the number of the new current thread,
and the topmost frame for that thread.

GDB Command

The corresponding GDB command is ‘thread’.

Example

(gdb)
-exec-next
^running
(gdb)
*stopped,reason="end-stepping-range",thread-id="2",line="187",
file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
(gdb)
-thread-list-ids
^done,
thread-ids={thread-id="3",thread-id="2",thread-id="1"},
number-of-threads="3"
(gdb)
-thread-select 3
^done,new-thread-id="3",
frame={level="0 ",func="vprintf",
args=[{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""},
{name="arg",value="0x2"}],file="vprintf.c",line="31"}
(gdb)

244 Debugging with GDB

24.13 gdb/mi Tracepoint Commands

The tracepoint commands are not yet implemented.

24.14 gdb/mi Variable Objects

Motivation for Variable Objects in gdb/mi

For the implementation of a variable debugger window (locals, watched expressions,
etc.), we are proposing the adaptation of the existing code used by Insight.

The two main reasons for that are:
1. It has been proven in practice (it is already on its second generation).
2. It will shorten development time (needless to say how important it is now).

The original interface was designed to be used by Tcl code, so it was slightly changed so
it could be used through gdb/mi. This section describes the gdb/mi operations that will
be available and gives some hints about their use.

Note: In addition to the set of operations described here, we expect the gui implemen-
tation of a variable window to require, at least, the following operations:
• -gdb-show output-radix

• -stack-list-arguments

• -stack-list-locals

• -stack-select-frame

Introduction to Variable Objects in gdb/mi

The basic idea behind variable objects is the creation of a named object to represent a
variable, an expression, a memory location or even a CPU register. For each object created,
a set of operations is available for examining or changing its properties.

Furthermore, complex data types, such as C structures, are represented in a tree for-
mat. For instance, the struct type variable is the root and the children will represent the
struct members. If a child is itself of a complex type, it will also have children of its own.
Appropriate language differences are handled for C, C++ and Java.

When returning the actual values of the objects, this facility allows for the individual
selection of the display format used in the result creation. It can be chosen among: binary,
decimal, hexadecimal, octal and natural. Natural refers to a default format automatically
chosen based on the variable type (like decimal for an int, hex for pointers, etc.).

The following is the complete set of gdb/mi operations defined to access this function-
ality:
Operation Description

-var-create create a variable object
-var-delete delete the variable object and its children
-var-set-format set the display format of this variable
-var-show-format show the display format of this variable

Chapter 24: The gdb/mi Interface 245

-var-info-num-children tells how many children this object has
-var-list-children return a list of the object’s children
-var-info-type show the type of this variable object
-var-info-expression print what this variable object represents
-var-show-attributes is this variable editable? does it exist here?
-var-evaluate-expression get the value of this variable
-var-assign set the value of this variable
-var-update update the variable and its children

In the next subsection we describe each operation in detail and suggest how it can be
used.

Description And Use of Operations on Variable Objects

The -var-create Command

Synopsis

-var-create {name | "-"}
{frame-addr | "*"} expression

This operation creates a variable object, which allows the monitoring of a variable, the
result of an expression, a memory cell or a CPU register.

The name parameter is the string by which the object can be referenced. It must
be unique. If ‘-’ is specified, the varobj system will generate a string “varNNNNNN”
automatically. It will be unique provided that one does not specify name on that format.
The command fails if a duplicate name is found.

The frame under which the expression should be evaluated can be specified by frame-
addr. A ‘*’ indicates that the current frame should be used.

expression is any expression valid on the current language set (must not begin with a
‘*’), or one of the following:
• ‘*addr’, where addr is the address of a memory cell
• ‘*addr-addr’ — a memory address range (TBD)
• ‘$regname’ — a CPU register name

Result

This operation returns the name, number of children and the type of the object created.
Type is returned as a string as the ones generated by the GDB CLI:

name="name",numchild="N",type="type"

The -var-delete Command

Synopsis

-var-delete name

Deletes a previously created variable object and all of its children.
Returns an error if the object name is not found.

246 Debugging with GDB

The -var-set-format Command

Synopsis

-var-set-format name format-spec

Sets the output format for the value of the object name to be format-spec.
The syntax for the format-spec is as follows:

format-spec 7→
{binary | decimal | hexadecimal | octal | natural}

The -var-show-format Command

Synopsis

-var-show-format name

Returns the format used to display the value of the object name.
format 7→
format-spec

The -var-info-num-children Command

Synopsis

-var-info-num-children name

Returns the number of children of a variable object name:
numchild=n

The -var-list-children Command

Synopsis

-var-list-children name

Returns a list of the children of the specified variable object:
numchild=n,children={{name=name,
numchild=n,type=type},(repeats N times)}

The -var-info-type Command

Synopsis

-var-info-type name

Returns the type of the specified variable name. The type is returned as a string in the
same format as it is output by the GDB CLI:

type=typename

Chapter 24: The gdb/mi Interface 247

The -var-info-expression Command

Synopsis

-var-info-expression name

Returns what is represented by the variable object name:
lang=lang-spec,exp=expression

where lang-spec is {"C" | "C++" | "Java"}.

The -var-show-attributes Command

Synopsis

-var-show-attributes name

List attributes of the specified variable object name:
status=attr [(,attr)*]

where attr is { { editable | noneditable } | TBD }.

The -var-evaluate-expression Command

Synopsis

-var-evaluate-expression name

Evaluates the expression that is represented by the specified variable object and returns
its value as a string in the current format specified for the object:

value=value

The -var-assign Command

Synopsis

-var-assign name expression

Assigns the value of expression to the variable object specified by name. The object
must be ‘editable’.

The -var-update Command

Synopsis

-var-update {name | "*"}

Update the value of the variable object name by evaluating its expression after fetching
all the new values from memory or registers. A ‘*’ causes all existing variable objects to be
updated.

248 Debugging with GDB

Chapter 25: Reporting Bugs in GDB 249

25 Reporting Bugs in GDB

Your bug reports play an essential role in making GDB reliable.
Reporting a bug may help you by bringing a solution to your problem, or it may not.

But in any case the principal function of a bug report is to help the entire community by
making the next version of GDB work better. Bug reports are your contribution to the
maintenance of GDB.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

25.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If the debugger gets a fatal signal, for any input whatever, that is a GDB bug. Reliable
debuggers never crash.

• If GDB produces an error message for valid input, that is a bug. (Note that if you’re
cross debugging, the problem may also be somewhere in the connection to the target.)

• If GDB does not produce an error message for invalid input, that is a bug. However,
you should note that your idea of “invalid input” might be our idea of “an extension”
or “support for traditional practice”.

• If you are an experienced user of debugging tools, your suggestions for improvement of
GDB are welcome in any case.

25.2 How to report bugs

A number of companies and individuals offer support for gnu products. If you obtained
GDB from a support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file
‘etc/SERVICE’ in the gnu Emacs distribution.

In any event, we also recommend that you submit bug reports for GDB. The prefered
method is to submit them directly using GDB’s Bugs web page. Alternatively, the e-mail
gateway can be used.

Do not send bug reports to ‘info-gdb’, or to ‘help-gdb’, or to any newsgroups. Most
users of GDB do not want to receive bug reports. Those that do have arranged to receive
‘bug-gdb’.

The mailing list ‘bug-gdb’ has a newsgroup ‘gnu.gdb.bug’ which serves as a repeater.
The mailing list and the newsgroup carry exactly the same messages. Often people think of
posting bug reports to the newsgroup instead of mailing them. This appears to work, but
it has one problem which can be crucial: a newsgroup posting often lacks a mail path back
to the sender. Thus, if we need to ask for more information, we may be unable to reach
you. For this reason, it is better to send bug reports to the mailing list.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

http://www.gnu.org/software/gdb/bugs/
mailto:bug-gdb@gnu.org
mailto:bug-gdb@gnu.org

250 Debugging with GDB

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of the
variable you use in an example does not matter. Well, probably it does not, but one cannot
be sure. Perhaps the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the debugger into doing the right thing despite the bug.
Play it safe and give a specific, complete example. That is the easiest thing for you to do,
and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug. It may
be that the bug has been reported previously, but neither you nor we can know that unless
your bug report is complete and self-contained.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those bug
reports are useless, and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly.

To enable us to fix the bug, you should include all these things:

• The version of GDB. GDB announces it if you start with no arguments; you can also
print it at any time using show version.

Without this, we will not know whether there is any point in looking for the bug in the
current version of GDB.

• The type of machine you are using, and the operating system name and version number.

• What compiler (and its version) was used to compile GDB—e.g. “gcc–2.8.1”.

• What compiler (and its version) was used to compile the program you are debugging—
e.g. “gcc–2.8.1”, or “HP92453-01 A.10.32.03 HP C Compiler”. For GCC, you can say
gcc --version to get this information; for other compilers, see the documentation for
those compilers.

• The command arguments you gave the compiler to compile your example and observe
the bug. For example, did you use ‘-O’? To guarantee you will not omit something
important, list them all. A copy of the Makefile (or the output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

• A complete input script, and all necessary source files, that will reproduce the bug.

• A description of what behavior you observe that you believe is incorrect. For example,
“It gets a fatal signal.”

Of course, if the bug is that GDB gets a fatal signal, then we will certainly notice it.
But if the bug is incorrect output, we might not notice unless it is glaringly wrong.
You might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of GDB is out of synch, or
you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and ours would not. If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for us. If you had
not told us to expect a crash, then we would not be able to draw any conclusion from
our observations.

Chapter 25: Reporting Bugs in GDB 251

• If you wish to suggest changes to the GDB source, send us context diffs. If you even
discuss something in the GDB source, refer to it by context, not by line number.
The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.

Here are some things that are not necessary:
• A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.
This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.
Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.
However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

• A patch for the bug.
A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we
might not understand it at all.
Sometimes with a program as complicated as GDB it is very hard to construct an
example that will make the program follow a certain path through the code. If you do
not send us the example, we will not be able to construct one, so we will not be able
to verify that the bug is fixed.
And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

• A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even we cannot guess right about such things without
first using the debugger to find the facts.

252 Debugging with GDB

Chapter 26: Command Line Editing 253

26 Command Line Editing

This chapter describes the basic features of the gnu command line editing interface.

26.1 Introduction to Line Editing

The following paragraphs describe the notation used to represent keystrokes.
The text 〈C-k〉 is read as ‘Control-K’ and describes the character produced when the 〈k〉

key is pressed while the Control key is depressed.
The text 〈M-k〉 is read as ‘Meta-K’ and describes the character produced when the Meta

key (if you have one) is depressed, and the 〈k〉 key is pressed. The Meta key is labeled 〈ALT〉
on many keyboards. On keyboards with two keys labeled 〈ALT〉 (usually to either side of the
space bar), the 〈ALT〉 on the left side is generally set to work as a Meta key. The 〈ALT〉 key
on the right may also be configured to work as a Meta key or may be configured as some
other modifier, such as a Compose key for typing accented characters.

If you do not have a Meta or 〈ALT〉 key, or another key working as a Meta key, the identical
keystroke can be generated by typing 〈ESC〉 first, and then typing 〈k〉. Either process is known
as metafying the 〈k〉 key.

The text 〈M-C-k〉 is read as ‘Meta-Control-k’ and describes the character produced by
metafying 〈C-k〉.

In addition, several keys have their own names. Specifically, 〈DEL〉, 〈ESC〉, 〈LFD〉, 〈SPC〉,
〈RET〉, and 〈TAB〉 all stand for themselves when seen in this text, or in an init file (see
Section 26.3 [Readline Init File], page 256). If your keyboard lacks a 〈LFD〉 key, typing 〈C-j〉
will produce the desired character. The 〈RET〉 key may be labeled 〈Return〉 or 〈Enter〉 on some
keyboards.

26.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the
first word on the line is misspelled. The Readline library gives you a set of commands for
manipulating the text as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands, you move the cursor
to the place that needs correction, and delete or insert the text of the corrections. Then,
when you are satisfied with the line, you simply press 〈RETURN〉. You do not have to be at
the end of the line to press 〈RETURN〉; the entire line is accepted regardless of the location
of the cursor within the line.

26.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears
where the cursor was, and then the cursor moves one space to the right. If you mistype a
character, you can use your erase character to back up and delete the mistyped character.

Sometimes you may mistype a character, and not notice the error until you have typed
several other characters. In that case, you can type 〈C-b〉 to move the cursor to the left, and
then correct your mistake. Afterwards, you can move the cursor to the right with 〈C-f〉.

254 Debugging with GDB

When you add text in the middle of a line, you will notice that characters to the right
of the cursor are ‘pushed over’ to make room for the text that you have inserted. Likewise,
when you delete text behind the cursor, characters to the right of the cursor are ‘pulled
back’ to fill in the blank space created by the removal of the text. A list of the bare essentials
for editing the text of an input line follows.

〈C-b〉 Move back one character.

〈C-f〉 Move forward one character.

〈DEL〉 or 〈Backspace〉
Delete the character to the left of the cursor.

〈C-d〉 Delete the character underneath the cursor.

Printing characters
Insert the character into the line at the cursor.

〈C- 〉 or 〈C-x C-u〉
Undo the last editing command. You can undo all the way back to an empty
line.

(Depending on your configuration, the 〈Backspace〉 key be set to delete the character to the
left of the cursor and the 〈DEL〉 key set to delete the character underneath the cursor, like
〈C-d〉, rather than the character to the left of the cursor.)

26.2.2 Readline Movement Commands

The above table describes the most basic keystrokes that you need in order to do editing
of the input line. For your convenience, many other commands have been added in addition
to 〈C-b〉, 〈C-f〉, 〈C-d〉, and 〈DEL〉. Here are some commands for moving more rapidly about the
line.

〈C-a〉 Move to the start of the line.

〈C-e〉 Move to the end of the line.

〈M-f〉 Move forward a word, where a word is composed of letters and digits.

〈M-b〉 Move backward a word.

〈C-l〉 Clear the screen, reprinting the current line at the top.

Notice how 〈C-f〉 moves forward a character, while 〈M-f〉 moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

26.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use,
usually by yanking (re-inserting) it back into the line. (‘Cut’ and ‘paste’ are more recent
jargon for ‘kill’ and ‘yank’.)

If the description for a command says that it ‘kills’ text, then you can be sure that you
can get the text back in a different (or the same) place later.

Chapter 26: Command Line Editing 255

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it all. The
kill ring is not line specific; the text that you killed on a previously typed line is available
to be yanked back later, when you are typing another line.

Here is the list of commands for killing text.

〈C-k〉 Kill the text from the current cursor position to the end of the line.

〈M-d〉 Kill from the cursor to the end of the current word, or, if between words, to the
end of the next word. Word boundaries are the same as those used by 〈M-f〉.

〈M-DEL〉 Kill from the cursor the start of the previous word, or, if between words, to
the start of the previous word. Word boundaries are the same as those used by
〈M-b〉.

〈C-w〉 Kill from the cursor to the previous whitespace. This is different than 〈M-DEL〉
because the word boundaries differ.

Here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer.

〈C-y〉 Yank the most recently killed text back into the buffer at the cursor.

〈M-y〉 Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is 〈C-y〉 or 〈M-y〉.

26.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts
as a repeat count, other times it is the sign of the argument that is significant. If you
pass a negative argument to a command which normally acts in a forward direction, that
command will act in a backward direction. For example, to kill text back to the start of
the line, you might type ‘M-- C-k’.

The general way to pass numeric arguments to a command is to type meta digits before
the command. If the first ‘digit’ typed is a minus sign (‘-’), then the sign of the argument
will be negative. Once you have typed one meta digit to get the argument started, you can
type the remainder of the digits, and then the command. For example, to give the 〈C-d〉
command an argument of 10, you could type ‘M-1 0 C-d’.

26.2.5 Searching for Commands in the History

Readline provides commands for searching through the command history for lines con-
taining a specified string. There are two search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each
character of the search string is typed, Readline displays the next entry from the history
matching the string typed so far. An incremental search requires only as many characters as
needed to find the desired history entry. To search backward in the history for a particular
string, type 〈C-r〉. Typing 〈C-s〉 searches forward through the history. The characters present
in the value of the isearch-terminators variable are used to terminate an incremental
search. If that variable has not been assigned a value, the 〈ESC〉 and 〈C-J〉 characters will
terminate an incremental search. 〈C-g〉 will abort an incremental search and restore the

256 Debugging with GDB

original line. When the search is terminated, the history entry containing the search string
becomes the current line.

To find other matching entries in the history list, type 〈C-r〉 or 〈C-s〉 as appropriate. This
will search backward or forward in the history for the next entry matching the search string
typed so far. Any other key sequence bound to a Readline command will terminate the
search and execute that command. For instance, a 〈RET〉 will terminate the search and
accept the line, thereby executing the command from the history list.

Non-incremental searches read the entire search string before starting to search for
matching history lines. The search string may be typed by the user or be part of the
contents of the current line.

26.3 Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings installed
by default, it is possible to use a different set of keybindings. Any user can customize
programs that use Readline by putting commands in an inputrc file, conventionally in his
home directory. The name of this file is taken from the value of the environment variable
INPUTRC. If that variable is unset, the default is ‘~/.inputrc’.

When a program which uses the Readline library starts up, the init file is read, and the
key bindings are set.

In addition, the C-x C-r command re-reads this init file, thus incorporating any changes
that you might have made to it.

26.3.1 Readline Init File Syntax

There are only a few basic constructs allowed in the Readline init file. Blank lines are
ignored. Lines beginning with a ‘#’ are comments. Lines beginning with a ‘$’ indicate
conditional constructs (see Section 26.3.2 [Conditional Init Constructs], page 260). Other
lines denote variable settings and key bindings.

Variable Settings
You can modify the run-time behavior of Readline by altering the values of
variables in Readline using the set command within the init file. Here is how to
change from the default Emacs-like key binding to use vi line editing commands:

set editing-mode vi

A great deal of run-time behavior is changeable with the following variables.

bell-style
Controls what happens when Readline wants to ring the termi-
nal bell. If set to ‘none’, Readline never rings the bell. If set to
‘visible’, Readline uses a visible bell if one is available. If set to
‘audible’ (the default), Readline attempts to ring the terminal’s
bell.

comment-begin
The string to insert at the beginning of the line when the insert-
comment command is executed. The default value is "#".

Chapter 26: Command Line Editing 257

completion-ignore-case
If set to ‘on’, Readline performs filename matching and completion
in a case-insensitive fashion. The default value is ‘off’.

completion-query-items
The number of possible completions that determines when the user
is asked whether he wants to see the list of possibilities. If the
number of possible completions is greater than this value, Readline
will ask the user whether or not he wishes to view them; otherwise,
they are simply listed. The default limit is 100.

convert-meta
If set to ‘on’, Readline will convert characters with the eighth bit
set to an ASCII key sequence by stripping the eighth bit and pre-
fixing an 〈ESC〉 character, converting them to a meta-prefixed key
sequence. The default value is ‘on’.

disable-completion
If set to ‘On’, Readline will inhibit word completion. Completion
characters will be inserted into the line as if they had been mapped
to self-insert. The default is ‘off’.

editing-mode
The editing-mode variable controls which default set of key bind-
ings is used. By default, Readline starts up in Emacs editing mode,
where the keystrokes are most similar to Emacs. This variable can
be set to either ‘emacs’ or ‘vi’.

enable-keypad
When set to ‘on’, Readline will try to enable the application keypad
when it is called. Some systems need this to enable the arrow keys.
The default is ‘off’.

expand-tilde
If set to ‘on’, tilde expansion is performed when Readline attempts
word completion. The default is ‘off’.

horizontal-scroll-mode
This variable can be set to either ‘on’ or ‘off’. Setting it to ‘on’
means that the text of the lines being edited will scroll horizontally
on a single screen line when they are longer than the width of the
screen, instead of wrapping onto a new screen line. By default, this
variable is set to ‘off’.

input-meta
If set to ‘on’, Readline will enable eight-bit input (it will not strip
the eighth bit from the characters it reads), regardless of what the
terminal claims it can support. The default value is ‘off’. The
name meta-flag is a synonym for this variable.

isearch-terminators
The string of characters that should terminate an incremental
search without subsequently executing the character as a command

258 Debugging with GDB

(see Section 26.2.5 [Searching], page 255). If this variable has not
been given a value, the characters 〈ESC〉 and 〈C-J〉 will terminate an
incremental search.

keymap Sets Readline’s idea of the current keymap for key binding com-
mands. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-command, and vi-insert. vi is
equivalent to vi-command; emacs is equivalent to emacs-standard.
The default value is emacs. The value of the editing-mode variable
also affects the default keymap.

mark-directories
If set to ‘on’, completed directory names have a slash appended.
The default is ‘on’.

mark-modified-lines
This variable, when set to ‘on’, causes Readline to display an as-
terisk (‘*’) at the start of history lines which have been modified.
This variable is ‘off’ by default.

output-meta
If set to ‘on’, Readline will display characters with the eighth bit
set directly rather than as a meta-prefixed escape sequence. The
default is ‘off’.

print-completions-horizontally
If set to ‘on’, Readline will display completions with matches sorted
horizontally in alphabetical order, rather than down the screen.
The default is ‘off’.

show-all-if-ambiguous
This alters the default behavior of the completion functions. If set
to ‘on’, words which have more than one possible completion cause
the matches to be listed immediately instead of ringing the bell.
The default value is ‘off’.

visible-stats
If set to ‘on’, a character denoting a file’s type is appended to the
filename when listing possible completions. The default is ‘off’.

Key Bindings
The syntax for controlling key bindings in the init file is simple. First you
need to find the name of the command that you want to change. The following
sections contain tables of the command name, the default keybinding, if any,
and a short description of what the command does.
Once you know the name of the command, simply place the name of the key
you wish to bind the command to, a colon, and then the name of the command
on a line in the init file. The name of the key can be expressed in different
ways, depending on which is most comfortable for you.

keyname: function-name or macro
keyname is the name of a key spelled out in English. For example:

Chapter 26: Command Line Editing 259

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"

In the above example, 〈C-u〉 is bound to the function universal-
argument, and 〈C-o〉 is bound to run the macro expressed on the
right hand side (that is, to insert the text ‘> output’ into the line).

"keyseq": function-name or macro
keyseq differs from keyname above in that strings denoting an en-
tire key sequence can be specified, by placing the key sequence in
double quotes. Some gnu Emacs style key escapes can be used, as
in the following example, but the special character names are not
recognized.

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11~": "Function Key 1"

In the above example, 〈C-u〉 is bound to the function universal-
argument (just as it was in the first example), ‘〈C-x〉 〈C-r〉’ is bound to
the function re-read-init-file, and ‘〈ESC〉 〈[〉 〈1〉 〈1〉 〈~〉’ is bound
to insert the text ‘Function Key 1’.

The following gnu Emacs style escape sequences are available when specifying
key sequences:

\C- control prefix

\M- meta prefix

\e an escape character

\\ backslash

\" 〈"〉, a double quotation mark

\’ 〈’〉, a single quote or apostrophe

In addition to the gnu Emacs style escape sequences, a second set of backslash
escapes is available:

\a alert (bell)

\b backspace

\d delete

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\nnn the character whose ASCII code is the octal value nnn (one to three
digits)

260 Debugging with GDB

\xnnn the character whose ASCII code is the hexadecimal value nnn (one
to three digits)

When entering the text of a macro, single or double quotes must be used to
indicate a macro definition. Unquoted text is assumed to be a function name. In
the macro body, the backslash escapes described above are expanded. Backslash
will quote any other character in the macro text, including ‘"’ and ‘’’. For
example, the following binding will make ‘C-x \’ insert a single ‘\’ into the line:

"\C-x\\": "\\"

26.3.2 Conditional Init Constructs

Readline implements a facility similar in spirit to the conditional compilation features
of the C preprocessor which allows key bindings and variable settings to be performed as
the result of tests. There are four parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using Readline. The text of the test
extends to the end of the line; no characters are required to isolate it.

mode The mode= form of the $if directive is used to test whether Readline
is in emacs or vi mode. This may be used in conjunction with the
‘set keymap’ command, for instance, to set bindings in the emacs-
standard and emacs-ctlx keymaps only if Readline is starting out
in emacs mode.

term The term= form may be used to include terminal-specific key bind-
ings, perhaps to bind the key sequences output by the terminal’s
function keys. The word on the right side of the ‘=’ is tested against
both the full name of the terminal and the portion of the terminal
name before the first ‘-’. This allows sun to match both sun and
sun-cmd, for instance.

application
The application construct is used to include application-specific set-
tings. Each program using the Readline library sets the application
name, and you can test for it. This could be used to bind key se-
quences to functions useful for a specific program. For instance, the
following command adds a key sequence that quotes the current or
previous word in Bash:

$if Bash
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
$endif

$endif This command, as seen in the previous example, terminates an $if command.

$else Commands in this branch of the $if directive are executed if the test fails.

$include This directive takes a single filename as an argument and reads commands and
bindings from that file.

$include /etc/inputrc

Chapter 26: Command Line Editing 261

26.3.3 Sample Init File

Here is an example of an inputrc file. This illustrates key binding, variable assignment,
and conditional syntax.

262 Debugging with GDB

This file controls the behaviour of line input editing for
programs that use the Gnu Readline library. Existing programs
include FTP, Bash, and Gdb.
#
You can re-read the inputrc file with C-x C-r.
Lines beginning with ’#’ are comments.
#
First, include any systemwide bindings and variable assignments from
/etc/Inputrc
$include /etc/Inputrc

#
Set various bindings for emacs mode.

set editing-mode emacs

$if mode=emacs

Meta-Control-h: backward-kill-word Text after the function name is ignored

#
Arrow keys in keypad mode
#
#"\M-OD": backward-char
#"\M-OC": forward-char
#"\M-OA": previous-history
#"\M-OB": next-history
#
Arrow keys in ANSI mode
#
"\M-[D": backward-char
"\M-[C": forward-char
"\M-[A": previous-history
"\M-[B": next-history
#
Arrow keys in 8 bit keypad mode
#
#"\M-\C-OD": backward-char
#"\M-\C-OC": forward-char
#"\M-\C-OA": previous-history
#"\M-\C-OB": next-history
#
Arrow keys in 8 bit ANSI mode
#
#"\M-\C-[D": backward-char
#"\M-\C-[C": forward-char
#"\M-\C-[A": previous-history
#"\M-\C-[B": next-history

Chapter 26: Command Line Editing 263

C-q: quoted-insert

$endif

An old-style binding. This happens to be the default.
TAB: complete

Macros that are convenient for shell interaction
$if Bash
edit the path
"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
prepare to type a quoted word -- insert open and close
double quotes and move to just after the open quote
"\C-x\"": "\"\"\C-b"
insert a backslash (testing backslash escapes in sequences
and macros)
"\C-x\\": "\\"
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
Add a binding to refresh the line, which is unbound
"\C-xr": redraw-current-line
Edit variable on current line.
"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
$endif

use a visible bell if one is available
set bell-style visible

don’t strip characters to 7 bits when reading
set input-meta on

allow iso-latin1 characters to be inserted rather than converted to
prefix-meta sequences
set convert-meta off

display characters with the eighth bit set directly rather than
as meta-prefixed characters
set output-meta on

if there are more than 150 possible completions for a word, ask the
user if he wants to see all of them
set completion-query-items 150

For FTP
$if Ftp
"\C-xg": "get \M-?"
"\C-xt": "put \M-?"
"\M-.": yank-last-arg

264 Debugging with GDB

$endif

26.4 Bindable Readline Commands

This section describes Readline commands that may be bound to key sequences.
Command names without an accompanying key sequence are unbound by default. In

the following descriptions, point refers to the current cursor position, and mark refers to a
cursor position saved by the set-mark command. The text between the point and mark is
referred to as the region.

26.4.1 Commands For Moving

beginning-of-line (C-a)
Move to the start of the current line.

end-of-line (C-e)
Move to the end of the line.

forward-char (C-f)
Move forward a character.

backward-char (C-b)
Move back a character.

forward-word (M-f)
Move forward to the end of the next word. Words are composed of letters and
digits.

backward-word (M-b)
Move back to the start of the current or previous word. Words are composed
of letters and digits.

clear-screen (C-l)
Clear the screen and redraw the current line, leaving the current line at the top
of the screen.

redraw-current-line ()
Refresh the current line. By default, this is unbound.

26.4.2 Commands For Manipulating The History

accept-line (Newline, Return)
Accept the line regardless of where the cursor is. If this line is non-empty, add
it to the history list. If this line was a history line, then restore the history line
to its original state.

previous-history (C-p)
Move ‘up’ through the history list.

next-history (C-n)
Move ‘down’ through the history list.

Chapter 26: Command Line Editing 265

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line currently being entered.

reverse-search-history (C-r)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

forward-search-history (C-s)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary. This is an incremental search.

non-incremental-reverse-search-history (M-p)
Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary using a non-incremental search for a string supplied by the
user.

non-incremental-forward-search-history (M-n)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary using a non-incremental search for a string supplied by the
user.

history-search-forward ()
Search forward through the history for the string of characters between the
start of the current line and the point. This is a non-incremental search. By
default, this command is unbound.

history-search-backward ()
Search backward through the history for the string of characters between the
start of the current line and the point. This is a non-incremental search. By
default, this command is unbound.

yank-nth-arg (M-C-y)
Insert the first argument to the previous command (usually the second word on
the previous line). With an argument n, insert the nth word from the previous
command (the words in the previous command begin with word 0). A negative
argument inserts the nth word from the end of the previous command.

yank-last-arg (M-., M-_)
Insert last argument to the previous command (the last word of the previous
history entry). With an argument, behave exactly like yank-nth-arg. Succes-
sive calls to yank-last-arg move back through the history list, inserting the
last argument of each line in turn.

26.4.3 Commands For Changing Text

delete-char (C-d)
Delete the character under the cursor. If the cursor is at the beginning of the
line, there are no characters in the line, and the last character typed was not
bound to delete-char, then return EOF.

266 Debugging with GDB

backward-delete-char (Rubout)
Delete the character behind the cursor. A numeric argument means to kill the
characters instead of deleting them.

forward-backward-delete-char ()
Delete the character under the cursor, unless the cursor is at the end of the
line, in which case the character behind the cursor is deleted. By default, this
is not bound to a key.

quoted-insert (C-q, C-v)
Add the next character typed to the line verbatim. This is how to insert key
sequences like 〈C-q〉, for example.

tab-insert (M-TAB)
Insert a tab character.

self-insert (a, b, A, 1, !, ...)
Insert yourself.

transpose-chars (C-t)
Drag the character before the cursor forward over the character at the cursor,
moving the cursor forward as well. If the insertion point is at the end of the
line, then this transposes the last two characters of the line. Negative arguments
have no effect.

transpose-words (M-t)
Drag the word before point past the word after point, moving point past that
word as well.

upcase-word (M-u)
Uppercase the current (or following) word. With a negative argument, upper-
case the previous word, but do not move the cursor.

downcase-word (M-l)
Lowercase the current (or following) word. With a negative argument, lowercase
the previous word, but do not move the cursor.

capitalize-word (M-c)
Capitalize the current (or following) word. With a negative argument, capitalize
the previous word, but do not move the cursor.

26.4.4 Killing And Yanking

kill-line (C-k)
Kill the text from point to the end of the line.

backward-kill-line (C-x Rubout)
Kill backward to the beginning of the line.

unix-line-discard (C-u)
Kill backward from the cursor to the beginning of the current line.

Chapter 26: Command Line Editing 267

kill-whole-line ()
Kill all characters on the current line, no matter point is. By default, this is
unbound.

kill-word (M-d)
Kill from point to the end of the current word, or if between words, to the end
of the next word. Word boundaries are the same as forward-word.

backward-kill-word (M-DEL)
Kill the word behind point. Word boundaries are the same as backward-word.

unix-word-rubout (C-w)
Kill the word behind point, using white space as a word boundary. The killed
text is saved on the kill-ring.

delete-horizontal-space ()
Delete all spaces and tabs around point. By default, this is unbound.

kill-region ()
Kill the text in the current region. By default, this command is unbound.

copy-region-as-kill ()
Copy the text in the region to the kill buffer, so it can be yanked right away.
By default, this command is unbound.

copy-backward-word ()
Copy the word before point to the kill buffer. The word boundaries are the
same as backward-word. By default, this command is unbound.

copy-forward-word ()
Copy the word following point to the kill buffer. The word boundaries are the
same as forward-word. By default, this command is unbound.

yank (C-y)
Yank the top of the kill ring into the buffer at the current cursor position.

yank-pop (M-y)
Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

26.4.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)
Add this digit to the argument already accumulating, or start a new argument.
〈M–〉 starts a negative argument.

universal-argument ()
This is another way to specify an argument. If this command is followed by one
or more digits, optionally with a leading minus sign, those digits define the ar-
gument. If the command is followed by digits, executing universal-argument
again ends the numeric argument, but is otherwise ignored. As a special case,

268 Debugging with GDB

if this command is immediately followed by a character that is neither a digit
or minus sign, the argument count for the next command is multiplied by four.
The argument count is initially one, so executing this function the first time
makes the argument count four, a second time makes the argument count six-
teen, and so on. By default, this is not bound to a key.

26.4.6 Letting Readline Type For You

complete (TAB)
Attempt to do completion on the text before the cursor. This is application-
specific. Generally, if you are typing a filename argument, you can do filename
completion; if you are typing a command, you can do command completion; if
you are typing in a symbol to GDB, you can do symbol name completion; if
you are typing in a variable to Bash, you can do variable name completion, and
so on.

possible-completions (M-?)
List the possible completions of the text before the cursor.

insert-completions (M-*)
Insert all completions of the text before point that would have been generated
by possible-completions.

menu-complete ()
Similar to complete, but replaces the word to be completed with a single match
from the list of possible completions. Repeated execution of menu-complete
steps through the list of possible completions, inserting each match in turn.
At the end of the list of completions, the bell is rung and the original text is
restored. An argument of n moves n positions forward in the list of matches;
a negative argument may be used to move backward through the list. This
command is intended to be bound to TAB, but is unbound by default.

delete-char-or-list ()
Deletes the character under the cursor if not at the beginning or end of the line
(like delete-char). If at the end of the line, behaves identically to possible-
completions. This command is unbound by default.

26.4.7 Keyboard Macros

start-kbd-macro (C-x ()
Begin saving the characters typed into the current keyboard macro.

end-kbd-macro (C-x))
Stop saving the characters typed into the current keyboard macro and save the
definition.

call-last-kbd-macro (C-x e)
Re-execute the last keyboard macro defined, by making the characters in the
macro appear as if typed at the keyboard.

Chapter 26: Command Line Editing 269

26.4.8 Some Miscellaneous Commands

re-read-init-file (C-x C-r)
Read in the contents of the inputrc file, and incorporate any bindings or variable
assignments found there.

abort (C-g)
Abort the current editing command and ring the terminal’s bell (subject to the
setting of bell-style).

do-uppercase-version (M-a, M-b, M-x, ...)
If the metafied character x is lowercase, run the command that is bound to the
corresponding uppercase character.

prefix-meta (ESC)
Make the next character typed be metafied. This is for keyboards without a
meta key. Typing ‘ESC f’ is equivalent to typing ‘M-f’.

undo (C-_, C-x C-u)
Incremental undo, separately remembered for each line.

revert-line (M-r)
Undo all changes made to this line. This is like executing the undo command
enough times to get back to the beginning.

tilde-expand (M-~)
Perform tilde expansion on the current word.

set-mark (C-@)
Set the mark to the current point. If a numeric argument is supplied, the mark
is set to that position.

exchange-point-and-mark (C-x C-x)
Swap the point with the mark. The current cursor position is set to the saved
position, and the old cursor position is saved as the mark.

character-search (C-])
A character is read and point is moved to the next occurrence of that character.
A negative count searches for previous occurrences.

character-search-backward (M-C-])
A character is read and point is moved to the previous occurrence of that
character. A negative count searches for subsequent occurrences.

insert-comment (M-#)
The value of the comment-begin variable is inserted at the beginning of the
current line, and the line is accepted as if a newline had been typed.

dump-functions ()
Print all of the functions and their key bindings to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

270 Debugging with GDB

dump-variables ()
Print all of the settable variables and their values to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-macros ()
Print all of the Readline key sequences bound to macros and the strings they
ouput. If a numeric argument is supplied, the output is formatted in such a
way that it can be made part of an inputrc file. This command is unbound by
default.

26.5 Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does contain
enough to allow simple editing of the line. The Readline vi mode behaves as specified in
the POSIX 1003.2 standard.

In order to switch interactively between emacs and vi editing modes, use the command
M-C-j (toggle-editing-mode). The Readline default is emacs mode.

When you enter a line in vi mode, you are already placed in ‘insertion’ mode, as if you
had typed an ‘i’. Pressing 〈ESC〉 switches you into ‘command’ mode, where you can edit the
text of the line with the standard vi movement keys, move to previous history lines with
‘k’ and subsequent lines with ‘j’, and so forth.

Chapter 27: Using History Interactively 271

27 Using History Interactively

This chapter describes how to use the GNU History Library interactively, from a user’s
standpoint. It should be considered a user’s guide.

27.1 History Expansion

The History library provides a history expansion feature that is similar to the history
expansion provided by csh. This section describes the syntax used to manipulate the history
information.

History expansions introduce words from the history list into the input stream, making
it easy to repeat commands, insert the arguments to a previous command into the current
input line, or fix errors in previous commands quickly.

History expansion takes place in two parts. The first is to determine which line from
the history list should be used during substitution. The second is to select portions of
that line for inclusion into the current one. The line selected from the history is called the
event, and the portions of that line that are acted upon are called words. Various modifiers
are available to manipulate the selected words. The line is broken into words in the same
fashion that Bash does, so that several words surrounded by quotes are considered one word.
History expansions are introduced by the appearance of the history expansion character,
which is ‘!’ by default.

27.1.1 Event Designators

An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed by a space, tab, the end of
the line, ‘=’ or ‘(’.

!n Refer to command line n.

!-n Refer to the command n lines back.

!! Refer to the previous command. This is a synonym for ‘!-1’.

!string Refer to the most recent command starting with string.

!?string[?]
Refer to the most recent command containing string. The trailing ‘?’ may be
omitted if the string is followed immediately by a newline.

^string1^string2^
Quick Substitution. Repeat the last command, replacing string1 with string2.
Equivalent to !!:s/string1/string2/.

!# The entire command line typed so far.

272 Debugging with GDB

27.1.2 Word Designators

Word designators are used to select desired words from the event. A ‘:’ separates the
event specification from the word designator. It may be omitted if the word designator
begins with a ‘^’, ‘$’, ‘*’, ‘-’, or ‘%’. Words are numbered from the beginning of the line,
with the first word being denoted by 0 (zero). Words are inserted into the current line
separated by single spaces.

For example,

!! designates the preceding command. When you type this, the preceding com-
mand is repeated in toto.

!!:$ designates the last argument of the preceding command. This may be shortened
to !$.

!fi:2 designates the second argument of the most recent command starting with the
letters fi.

Here are the word designators:

0 (zero) The 0th word. For many applications, this is the command word.

n The nth word.

^ The first argument; that is, word 1.

$ The last argument.

% The word matched by the most recent ‘?string?’ search.

x-y A range of words; ‘-y ’ abbreviates ‘0-y ’.

* All of the words, except the 0th. This is a synonym for ‘1-$’. It is not an error
to use ‘*’ if there is just one word in the event; the empty string is returned in
that case.

x* Abbreviates ‘x-$’

x- Abbreviates ‘x-$’ like ‘x*’, but omits the last word.

If a word designator is supplied without an event specification, the previous command
is used as the event.

27.1.3 Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’.

h Remove a trailing pathname component, leaving only the head.

t Remove all leading pathname components, leaving the tail.

r Remove a trailing suffix of the form ‘.suffix’, leaving the basename.

e Remove all but the trailing suffix.

p Print the new command but do not execute it.

Chapter 27: Using History Interactively 273

s/old/new/
Substitute new for the first occurrence of old in the event line. Any delimiter
may be used in place of ‘/’. The delimiter may be quoted in old and new with a
single backslash. If ‘&’ appears in new, it is replaced by old. A single backslash
will quote the ‘&’. The final delimiter is optional if it is the last character on
the input line.

& Repeat the previous substitution.

g Cause changes to be applied over the entire event line. Used in conjunction
with ‘s’, as in gs/old/new/, or with ‘&’.

274 Debugging with GDB

Appendix A: Formatting Documentation 275

Appendix A Formatting Documentation

The GDB 4 release includes an already-formatted reference card, ready for printing
with PostScript or Ghostscript, in the ‘gdb’ subdirectory of the main source directory1. If
you can use PostScript or Ghostscript with your printer, you can print the reference card
immediately with ‘refcard.ps’.

The release also includes the source for the reference card. You can format it, using
TEX, by typing:

make refcard.dvi

The GDB reference card is designed to print in landscape mode on US “letter” size
paper; that is, on a sheet 11 inches wide by 8.5 inches high. You will need to specify this
form of printing as an option to your dvi output program.

All the documentation for GDB comes as part of the machine-readable distribution. The
documentation is written in Texinfo format, which is a documentation system that uses a
single source file to produce both on-line information and a printed manual. You can use
one of the Info formatting commands to create the on-line version of the documentation
and TEX (or texi2roff) to typeset the printed version.

GDB includes an already formatted copy of the on-line Info version of this manual in
the ‘gdb’ subdirectory. The main Info file is ‘gdb-5.3/gdb/gdb.info’, and it refers to
subordinate files matching ‘gdb.info*’ in the same directory. If necessary, you can print
out these files, or read them with any editor; but they are easier to read using the info
subsystem in gnu Emacs or the standalone info program, available as part of the gnu

Texinfo distribution.
If you want to format these Info files yourself, you need one of the Info formatting

programs, such as texinfo-format-buffer or makeinfo.
If you have makeinfo installed, and are in the top level GDB source directory (‘gdb-5.3’,

in the case of version 5.3), you can make the Info file by typing:
cd gdb
make gdb.info

If you want to typeset and print copies of this manual, you need TEX, a program to print
its dvi output files, and ‘texinfo.tex’, the Texinfo definitions file.

TEX is a typesetting program; it does not print files directly, but produces output files
called dvi files. To print a typeset document, you need a program to print dvi files. If your
system has TEX installed, chances are it has such a program. The precise command to use
depends on your system; lpr -d is common; another (for PostScript devices) is dvips. The
dvi print command may require a file name without any extension or a ‘.dvi’ extension.

TEX also requires a macro definitions file called ‘texinfo.tex’. This file tells TEX how
to typeset a document written in Texinfo format. On its own, TEX cannot either read
or typeset a Texinfo file. ‘texinfo.tex’ is distributed with GDB and is located in the
‘gdb-version-number/texinfo’ directory.

If you have TEX and a dvi printer program installed, you can typeset and print this
manual. First switch to the the ‘gdb’ subdirectory of the main source directory (for example,
to ‘gdb-5.3/gdb’) and type:

1 In ‘gdb-5.3/gdb/refcard.ps’ of the version 5.3 release.

276 Debugging with GDB

make gdb.dvi

Then give ‘gdb.dvi’ to your dvi printing program.

Appendix B: Installing GDB 277

Appendix B Installing GDB

GDB comes with a configure script that automates the process of preparing GDB for
installation; you can then use make to build the gdb program.1

The GDB distribution includes all the source code you need for GDB in a single directory,
whose name is usually composed by appending the version number to ‘gdb’.

For example, the GDB version 5.3 distribution is in the ‘gdb-5.3’ directory. That
directory contains:

gdb-5.3/configure (and supporting files)
script for configuring GDB and all its supporting libraries

gdb-5.3/gdb
the source specific to GDB itself

gdb-5.3/bfd
source for the Binary File Descriptor library

gdb-5.3/include
gnu include files

gdb-5.3/libiberty
source for the ‘-liberty’ free software library

gdb-5.3/opcodes
source for the library of opcode tables and disassemblers

gdb-5.3/readline
source for the gnu command-line interface

gdb-5.3/glob
source for the gnu filename pattern-matching subroutine

gdb-5.3/mmalloc
source for the gnu memory-mapped malloc package

The simplest way to configure and build GDB is to run configure from the ‘gdb-version-
number’ source directory, which in this example is the ‘gdb-5.3’ directory.

First switch to the ‘gdb-version-number’ source directory if you are not already in it;
then run configure. Pass the identifier for the platform on which GDB will run as an
argument.

For example:
cd gdb-5.3
./configure host
make

where host is an identifier such as ‘sun4’ or ‘decstation’, that identifies the platform where
GDB will run. (You can often leave off host; configure tries to guess the correct value by
examining your system.)

1 If you have a more recent version of GDB than 5.3, look at the ‘README’ file in the sources; we may have
improved the installation procedures since publishing this manual.

278 Debugging with GDB

Running ‘configure host’ and then running make builds the ‘bfd’, ‘readline’,
‘mmalloc’, and ‘libiberty’ libraries, then gdb itself. The configured source files, and the
binaries, are left in the corresponding source directories.

configure is a Bourne-shell (/bin/sh) script; if your system does not recognize this
automatically when you run a different shell, you may need to run sh on it explicitly:

sh configure host

If you run configure from a directory that contains source directories for multiple
libraries or programs, such as the ‘gdb-5.3’ source directory for version 5.3, configure
creates configuration files for every directory level underneath (unless you tell it not to,
with the ‘--norecursion’ option).

You can run the configure script from any of the subordinate directories in the GDB
distribution if you only want to configure that subdirectory, but be sure to specify a path
to it.

For example, with version 5.3, type the following to configure only the bfd subdirectory:

cd gdb-5.3/bfd
../configure host

You can install gdb anywhere; it has no hardwired paths. However, you should make
sure that the shell on your path (named by the ‘SHELL’ environment variable) is publicly
readable. Remember that GDB uses the shell to start your program—some systems refuse
to let GDB debug child processes whose programs are not readable.

B.1 Compiling GDB in another directory

If you want to run GDB versions for several host or target machines, you need a different
gdb compiled for each combination of host and target. configure is designed to make this
easy by allowing you to generate each configuration in a separate subdirectory, rather than
in the source directory. If your make program handles the ‘VPATH’ feature (gnu make does),
running make in each of these directories builds the gdb program specified there.

To build gdb in a separate directory, run configure with the ‘--srcdir’ option to
specify where to find the source. (You also need to specify a path to find configure itself
from your working directory. If the path to configure would be the same as the argument
to ‘--srcdir’, you can leave out the ‘--srcdir’ option; it is assumed.)

For example, with version 5.3, you can build GDB in a separate directory for a Sun 4
like this:

cd gdb-5.3
mkdir ../gdb-sun4
cd ../gdb-sun4
../gdb-5.3/configure sun4
make

When configure builds a configuration using a remote source directory, it creates a
tree for the binaries with the same structure (and using the same names) as the tree under
the source directory. In the example, you’d find the Sun 4 library ‘libiberty.a’ in the
directory ‘gdb-sun4/libiberty’, and GDB itself in ‘gdb-sun4/gdb’.

Appendix B: Installing GDB 279

One popular reason to build several GDB configurations in separate directories is to
configure GDB for cross-compiling (where GDB runs on one machine—the host—while de-
bugging programs that run on another machine—the target). You specify a cross-debugging
target by giving the ‘--target=target’ option to configure.

When you run make to build a program or library, you must run it in a configured
directory—whatever directory you were in when you called configure (or one of its subdi-
rectories).

The Makefile that configure generates in each source directory also runs recursively. If
you type make in a source directory such as ‘gdb-5.3’ (or in a separate configured directory
configured with ‘--srcdir=dirname/gdb-5.3’), you will build all the required libraries, and
then build GDB.

When you have multiple hosts or targets configured in separate directories, you can run
make on them in parallel (for example, if they are NFS-mounted on each of the hosts); they
will not interfere with each other.

B.2 Specifying names for hosts and targets

The specifications used for hosts and targets in the configure script are based on a
three-part naming scheme, but some short predefined aliases are also supported. The full
naming scheme encodes three pieces of information in the following pattern:

architecture-vendor-os

For example, you can use the alias sun4 as a host argument, or as the value for target
in a --target=target option. The equivalent full name is ‘sparc-sun-sunos4’.

The configure script accompanying GDB does not provide any query facility to list
all supported host and target names or aliases. configure calls the Bourne shell script
config.sub to map abbreviations to full names; you can read the script, if you wish, or
you can use it to test your guesses on abbreviations—for example:

% sh config.sub i386-linux
i386-pc-linux-gnu
% sh config.sub alpha-linux
alpha-unknown-linux-gnu
% sh config.sub hp9k700
hppa1.1-hp-hpux
% sh config.sub sun4
sparc-sun-sunos4.1.1
% sh config.sub sun3
m68k-sun-sunos4.1.1
% sh config.sub i986v
Invalid configuration ‘i986v’: machine ‘i986v’ not recognized

config.sub is also distributed in the GDB source directory (‘gdb-5.3’, for version 5.3).

B.3 configure options

Here is a summary of the configure options and arguments that are most often useful
for building GDB. configure also has several other options not listed here. See Info file
‘configure.info’, node ‘What Configure Does’, for a full explanation of configure.

280 Debugging with GDB

configure [--help]
[--prefix=dir]
[--exec-prefix=dir]
[--srcdir=dirname]
[--norecursion] [--rm]
[--target=target]
host

You may introduce options with a single ‘-’ rather than ‘--’ if you prefer; but you may
abbreviate option names if you use ‘--’.

--help Display a quick summary of how to invoke configure.

--prefix=dir
Configure the source to install programs and files under directory ‘dir’.

--exec-prefix=dir
Configure the source to install programs under directory ‘dir’.

--srcdir=dirname
Warning: using this option requires gnu make, or another make that imple-
ments the VPATH feature.
Use this option to make configurations in directories separate from the GDB
source directories. Among other things, you can use this to build (or maintain)
several configurations simultaneously, in separate directories. configure writes
configuration specific files in the current directory, but arranges for them to use
the source in the directory dirname. configure creates directories under the
working directory in parallel to the source directories below dirname.

--norecursion
Configure only the directory level where configure is executed; do not propa-
gate configuration to subdirectories.

--target=target
Configure GDB for cross-debugging programs running on the specified target.
Without this option, GDB is configured to debug programs that run on the
same machine (host) as GDB itself.
There is no convenient way to generate a list of all available targets.

host ... Configure GDB to run on the specified host.
There is no convenient way to generate a list of all available hosts.

There are many other options available as well, but they are generally needed for special
purposes only.

Appendix C: Maintenance Commands 281

Appendix C Maintenance Commands

In addition to commands intended for GDB users, GDB includes a number of commands
intended for GDB developers. These commands are provided here for reference.

maint info breakpoints
Using the same format as ‘info breakpoints’, display both the breakpoints
you’ve set explicitly, and those GDB is using for internal purposes. Internal
breakpoints are shown with negative breakpoint numbers. The type column
identifies what kind of breakpoint is shown:

breakpoint
Normal, explicitly set breakpoint.

watchpoint
Normal, explicitly set watchpoint.

longjmp Internal breakpoint, used to handle correctly stepping through
longjmp calls.

longjmp resume
Internal breakpoint at the target of a longjmp.

until Temporary internal breakpoint used by the GDB until command.

finish Temporary internal breakpoint used by the GDB finish command.

shlib events
Shared library events.

maint print registers
maint print raw-registers
maint print cooked-registers

Print GDB’s internal register data structures.
The command ‘maint print raw-registers’ includes the contents of the raw
register cache; and the command ‘maint print cooked-registers’ includes
the (cooked) value of all registers. See section “Registers” in GDB Internals.
Takes an optional file parameter.

282 Debugging with GDB

Appendix D: GDB Remote Serial Protocol 283

Appendix D GDB Remote Serial Protocol

D.1 Overview

There may be occasions when you need to know something about the protocol—for
example, if there is only one serial port to your target machine, you might want your
program to do something special if it recognizes a packet meant for GDB.

In the examples below, ‘->’ and ‘<-’ are used to indicate transmitted and received data
respectfully.

All GDB commands and responses (other than acknowledgments) are sent as a packet.
A packet is introduced with the character ‘$’, the actual packet-data, and the terminating
character ‘#’ followed by a two-digit checksum:

$packet-data#checksum

The two-digit checksum is computed as the modulo 256 sum of all characters between the
leading ‘$’ and the trailing ‘#’ (an eight bit unsigned checksum).

Implementors should note that prior to GDB 5.0 the protocol specification also included
an optional two-digit sequence-id:

$sequence-id:packet-data#checksum

That sequence-id was appended to the acknowledgment. GDB has never output sequence-
ids. Stubs that handle packets added since GDB 5.0 must not accept sequence-id.

When either the host or the target machine receives a packet, the first response expected
is an acknowledgment: either ‘+’ (to indicate the package was received correctly) or ‘-’ (to
request retransmission):

-> $packet-data#checksum
<- +

The host (GDB) sends commands, and the target (the debugging stub incorporated in
your program) sends a response. In the case of step and continue commands, the response
is only sent when the operation has completed (the target has again stopped).

packet-data consists of a sequence of characters with the exception of ‘#’ and ‘$’ (see ‘X’
packet for additional exceptions).

Fields within the packet should be separated using ‘,’ ‘;’ or ‘:’. Except where otherwise
noted all numbers are represented in hex with leading zeros suppressed.

Implementors should note that prior to GDB 5.0, the character ‘:’ could not appear as
the third character in a packet (as it would potentially conflict with the sequence-id).

Response data can be run-length encoded to save space. A ‘*’ means that the next
character is an ascii encoding giving a repeat count which stands for that many repetitions
of the character preceding the ‘*’. The encoding is n+29, yielding a printable character
where n >=3 (which is where rle starts to win). The printable characters ‘$’, ‘#’, ‘+’ and ‘-’
or with a numeric value greater than 126 should not be used.

Some remote systems have used a different run-length encoding mechanism loosely ref-
ered to as the cisco encoding. Following the ‘*’ character are two hex digits that indicate
the size of the packet.

So:

284 Debugging with GDB

"0* "

means the same as "0000".
The error response returned for some packets includes a two character error number.

That number is not well defined.
For any command not supported by the stub, an empty response (‘$#00’) should be

returned. That way it is possible to extend the protocol. A newer GDB can tell if a packet
is supported based on that response.

A stub is required to support the ‘g’, ‘G’, ‘m’, ‘M’, ‘c’, and ‘s’ commands. All other
commands are optional.

D.2 Packets

The following table provides a complete list of all currently defined commands and their
corresponding response data.

! — extended mode
Enable extended mode. In extended mode, the remote server is made persistent.
The ‘R’ packet is used to restart the program being debugged.
Reply:

‘OK’ The remote target both supports and has enabled extended mode.

? — last signal
Indicate the reason the target halted. The reply is the same as for step and
continue.
Reply: See Section D.3 [Stop Reply Packets], page 289, for the reply specifica-
tions.

a — reserved
Reserved for future use.

Aarglen,argnum,arg,... — set program arguments (reserved)
Initialized ‘argv[]’ array passed into program. arglen specifies the number of
bytes in the hex encoded byte stream arg. See gdbserver for more details.
Reply:

‘OK’

‘ENN ’

bbaud — set baud (deprecated)
Change the serial line speed to baud.
JTC: When does the transport layer state change? When it’s received, or after
the ACK is transmitted. In either case, there are problems if the command or
the acknowledgment packet is dropped.
Stan: If people really wanted to add something like this, and get it working
for the first time, they ought to modify ser-unix.c to send some kind of out-of-
band message to a specially-setup stub and have the switch happen "in between"
packets, so that from remote protocol’s point of view, nothing actually happened.

Appendix D: GDB Remote Serial Protocol 285

Baddr,mode — set breakpoint (deprecated)
Set (mode is ‘S’) or clear (mode is ‘C’) a breakpoint at addr. This has been
replaced by the ‘Z’ and ‘z’ packets.

caddr — continue
addr is address to resume. If addr is omitted, resume at current address.
Reply: See Section D.3 [Stop Reply Packets], page 289, for the reply specifica-
tions.

Csig;addr — continue with signal
Continue with signal sig (hex signal number). If ;addr is omitted, resume at
same address.
Reply: See Section D.3 [Stop Reply Packets], page 289, for the reply specifica-
tions.

d — toggle debug (deprecated)
Toggle debug flag.

D — detach
Detach GDB from the remote system. Sent to the remote target before GDB
disconnects.
Reply:

‘no response’
GDB does not check for any response after sending this packet.

e — reserved
Reserved for future use.

E — reserved
Reserved for future use.

f — reserved
Reserved for future use.

F — reserved
Reserved for future use.

g — read registers
Read general registers.
Reply:

‘XX. . . ’ Each byte of register data is described by two hex digits. The bytes
with the register are transmitted in target byte order. The size of
each register and their position within the ‘g’ packet are deter-
mined by the GDB internal macros REGISTER RAW SIZE and
REGISTER NAME macros. The specification of several standard
g packets is specified below.

‘ENN ’ for an error.

GXX. . . — write regs
See [read registers packet], page 285, for a description of the XX. . . data.
Reply:

286 Debugging with GDB

‘OK’ for success

‘ENN ’ for an error

h — reserved
Reserved for future use.

Hct. . . — set thread
Set thread for subsequent operations (‘m’, ‘M’, ‘g’, ‘G’, et.al.). c depends on the
operation to be performed: it should be ‘c’ for step and continue operations,
‘g’ for other operations. The thread designator t. . . may be -1, meaning all the
threads, a thread number, or zero which means pick any thread.
Reply:

‘OK’ for success

‘ENN ’ for an error

iaddr,nnn — cycle step (draft)
Step the remote target by a single clock cycle. If ,nnn is present, cycle step
nnn cycles. If addr is present, cycle step starting at that address.

I — signal then cycle step (reserved)
See [step with signal packet], page 288. See [cycle step packet], page 286.

j — reserved
Reserved for future use.

J — reserved
Reserved for future use.

k — kill request
FIXME: There is no description of how to operate when a specific thread context
has been selected (i.e. does ’k’ kill only that thread?).

K — reserved
Reserved for future use.

l — reserved
Reserved for future use.

L — reserved
Reserved for future use.

maddr,length — read memory
Read length bytes of memory starting at address addr. Neither GDB nor the
stub assume that sized memory transfers are assumed using word alligned ac-
cesses. FIXME: A word aligned memory transfer mechanism is needed.
Reply:

‘XX. . . ’ XX. . . is mem contents. Can be fewer bytes than requested if
able to read only part of the data. Neither GDB nor the stub as-
sume that sized memory transfers are assumed using word alligned
accesses. FIXME: A word aligned memory transfer mechanism is
needed.

Appendix D: GDB Remote Serial Protocol 287

‘ENN ’ NN is errno

Maddr,length:XX. . . — write mem
Write length bytes of memory starting at address addr. XX. . . is the data.
Reply:

‘OK’ for success

‘ENN ’ for an error (this includes the case where only part of the data was
written).

n — reserved
Reserved for future use.

N — reserved
Reserved for future use.

o — reserved
Reserved for future use.

O — reserved
Reserved for future use.

pn. . . — read reg (reserved)
See [write register packet], page 287.
Reply:

‘r. . . .’ The hex encoded value of the register in target byte order.

Pn. . .=r. . . — write register
Write register n. . . with value r. . . , which contains two hex digits for each byte
in the register (target byte order).
Reply:

‘OK’ for success

‘ENN ’ for an error

qquery — general query
Request info about query. In general GDB queries have a leading upper case
letter. Custom vendor queries should use a company prefix (in lower case) ex:
‘qfsf.var’. query may optionally be followed by a ‘,’ or ‘;’ separated list.
Stubs must ensure that they match the full query name.
Reply:

‘XX. . . ’ Hex encoded data from query. The reply can not be empty.

‘ENN ’ error reply

‘’ Indicating an unrecognized query.

Qvar=val — general set
Set value of var to val.
See [general query packet], page 287, for a discussion of naming conventions.

288 Debugging with GDB

r — reset (deprecated)
Reset the entire system.

RXX — remote restart
Restart the program being debugged. XX, while needed, is ignored. This packet
is only available in extended mode.
Reply:

‘no reply ’ The ‘R’ packet has no reply.

saddr — step
addr is address to resume. If addr is omitted, resume at same address.
Reply: See Section D.3 [Stop Reply Packets], page 289, for the reply specifica-
tions.

Ssig;addr — step with signal
Like ‘C’ but step not continue.
Reply: See Section D.3 [Stop Reply Packets], page 289, for the reply specifica-
tions.

taddr:PP,MM — search
Search backwards starting at address addr for a match with pattern PP and
mask MM. PP and MM are 4 bytes. addr must be at least 3 digits.

TXX — thread alive
Find out if the thread XX is alive.
Reply:

‘OK’ thread is still alive

‘ENN ’ thread is dead

u — reserved
Reserved for future use.

U — reserved
Reserved for future use.

v — reserved
Reserved for future use.

V — reserved
Reserved for future use.

w — reserved
Reserved for future use.

W — reserved
Reserved for future use.

x — reserved
Reserved for future use.

Xaddr,length:XX. . . — write mem (binary)
addr is address, length is number of bytes, XX. . . is binary data. The characters
$, #, and 0x7d are escaped using 0x7d.

Appendix D: GDB Remote Serial Protocol 289

Reply:

‘OK’ for success

‘ENN ’ for an error

y — reserved
Reserved for future use.

Y reserved
Reserved for future use.

zt,addr,length — remove break or watchpoint (draft)
See [insert breakpoint or watchpoint packet], page 289.

Zt,addr,length — insert break or watchpoint (draft)
t is type: ‘0’ - software breakpoint, ‘1’ - hardware breakpoint, ‘2’ — write
watchpoint, ‘3’ - read watchpoint, ‘4’ - access watchpoint; addr is address;
length is in bytes. For a software breakpoint, length specifies the size of the
instruction to be patched. For hardware breakpoints and watchpoints length
specifies the memory region to be monitored. To avoid potential problems with
duplicate packets, the operations should be implemented in an idempotent way.
Reply:

‘ENN ’ for an error

‘OK’ for success

‘‘’’ If not supported.

D.3 Stop Reply Packets

The ‘C’, ‘c’, ‘S’, ‘s’ and ‘?’ packets can receive any of the below as a reply. In the case
of the ‘C’, ‘c’, ‘S’ and ‘s’ packets, that reply is only returned when the target halts. In the
below the exact meaning of ‘signal number’ is poorly defined. In general one of the UNIX
signal numbering conventions is used.

‘SAA’ AA is the signal number

‘TAAn...:r...;n...:r...;n...:r...;’
AA = two hex digit signal number; n... = register number (hex), r... = target
byte ordered register contents, size defined by REGISTER_RAW_SIZE; n... =
‘thread’, r... = thread process ID, this is a hex integer; n... = (‘watch’ |
‘rwatch’ | ‘awatch’, r... = data address, this is a hex integer; n... = other
string not starting with valid hex digit. GDB should ignore this n..., r... pair
and go on to the next. This way we can extend the protocol.

‘WAA’
The process exited, and AA is the exit status. This is only applicable to certain
targets.

‘XAA’
The process terminated with signal AA.

290 Debugging with GDB

‘NAA;t. . .;d. . .;b. . . (obsolete)’
AA = signal number; t. . . = address of symbol _start; d. . . = base of data
section; b. . . = base of bss section. Note: only used by Cisco Systems targets.
The difference between this reply and the ‘qOffsets’ query is that the ‘N’ packet
may arrive spontaneously whereas the ‘qOffsets’ is a query initiated by the host
debugger.

‘OXX. . . ’
XX. . . is hex encoding of ascii data. This can happen at any time while the
program is running and the debugger should continue to wait for ‘W’, ‘T’, etc.

D.4 General Query Packets

The following set and query packets have already been defined.

qC — current thread
Return the current thread id.
Reply:

‘QCpid’ Where pid is a HEX encoded 16 bit process id.

‘*’ Any other reply implies the old pid.

qfThreadInfo – all thread ids
qsThreadInfo

Obtain a list of active thread ids from the target (OS). Since there may be too
many active threads to fit into one reply packet, this query works iteratively:
it may require more than one query/reply sequence to obtain the entire list
of threads. The first query of the sequence will be the qfThreadInfo query;
subsequent queries in the sequence will be the qsThreadInfo query.
NOTE: replaces the qL query (see below).
Reply:

‘mid’ A single thread id

‘mid,id...’
a comma-separated list of thread ids

‘l’ (lower case ’el’) denotes end of list.

In response to each query, the target will reply with a list of one or more thread
ids, in big-endian hex, separated by commas. GDB will respond to each reply
with a request for more thread ids (using the qs form of the query), until the
target responds with l (lower-case el, for ’last’).

qThreadExtraInfo,id — extra thread info
Where id is a thread-id in big-endian hex. Obtain a printable string description
of a thread’s attributes from the target OS. This string may contain anything
that the target OS thinks is interesting for GDB to tell the user about the
thread. The string is displayed in GDB’s ‘info threads’ display. Some ex-
amples of possible thread extra info strings are “Runnable”, or “Blocked on
Mutex”.

Appendix D: GDB Remote Serial Protocol 291

Reply:

‘XX. . . ’ Where XX. . . is a hex encoding of ascii data, comprising the print-
able string containing the extra information about the thread’s at-
tributes.

qLstartflagthreadcountnextthread — query LIST or threadLIST (deprecated)
Obtain thread information from RTOS. Where: startflag (one hex digit) is one
to indicate the first query and zero to indicate a subsequent query; threadcount
(two hex digits) is the maximum number of threads the response packet can
contain; and nextthread (eight hex digits), for subsequent queries (startflag is
zero), is returned in the response as argthread.
NOTE: this query is replaced by the qfThreadInfo query (see above).
Reply:

‘qMcountdoneargthreadthread. . . ’
Where: count (two hex digits) is the number of threads being
returned; done (one hex digit) is zero to indicate more threads
and one indicates no further threads; argthreadid (eight hex dig-
its) is nextthread from the request packet; thread. . . is a sequence
of thread IDs from the target. threadid (eight hex digits). See
remote.c:parse_threadlist_response().

qCRC:addr,length — compute CRC of memory block
Reply:

‘ENN ’ An error (such as memory fault)

‘CCRC32’ A 32 bit cyclic redundancy check of the specified memory region.

qOffsets — query sect offs
Get section offsets that the target used when re-locating the downloaded image.
Note: while a Bss offset is included in the response, GDB ignores this and
instead applies the Data offset to the Bss section.
Reply:

‘Text=xxx;Data=yyy;Bss=zzz’
qPmodethreadid — thread info request

Returns information on threadid. Where: mode is a hex encoded 32 bit mode;
threadid is a hex encoded 64 bit thread ID.
Reply:

‘*’

See remote.c:remote_unpack_thread_info_response().

qRcmd,command — remote command
command (hex encoded) is passed to the local interpreter for execution. Invalid
commands should be reported using the output string. Before the final result
packet, the target may also respond with a number of intermediate Ooutput
console output packets. Implementors should note that providing access to a
stubs’s interpreter may have security implications.
Reply:

292 Debugging with GDB

‘OK’ A command response with no output.

‘OUTPUT’
A command response with the hex encoded output string OUT-
PUT.

‘ENN ’ Indicate a badly formed request.

‘‘’’ When ‘q’‘Rcmd’ is not recognized.

qSymbol:: — symbol lookup
Notify the target that GDB is prepared to serve symbol lookup requests. Accept
requests from the target for the values of symbols.
Reply:

‘OK’ The target does not need to look up any (more) symbols.

‘qSymbol:sym name’
The target requests the value of symbol sym name (hex
encoded). GDB may provide the value by using the
qSymbol:sym value:sym name message, described below.

qSymbol:sym value:sym name — symbol value
Set the value of sym name to sym value.
sym name (hex encoded) is the name of a symbol whose value the target has
previously requested.
sym value (hex) is the value for symbol sym name. If GDB cannot supply a
value for sym name, then this field will be empty.
Reply:

‘OK’ The target does not need to look up any (more) symbols.

‘qSymbol:sym name’
The target requests the value of a new symbol sym name (hex
encoded). GDB will continue to supply the values of symbols (if
available), until the target ceases to request them.

D.5 Register Packet Format

The following ‘g’/‘G’ packets have previously been defined. In the below, some thirty-two
bit registers are transferred as sixty-four bits. Those registers should be zero/sign extended
(which?) to fill the space allocated. Register bytes are transfered in target byte order. The
two nibbles within a register byte are transfered most-significant - least-significant.

MIPS32
All registers are transfered as thirty-two bit quantities in the order: 32 general-
purpose; sr; lo; hi; bad; cause; pc; 32 floating-point registers; fsr; fir; fp.

MIPS64
All registers are transfered as sixty-four bit quantities (including thirty-two bit
registers such as sr). The ordering is the same as MIPS32.

Appendix D: GDB Remote Serial Protocol 293

D.6 Examples

Example sequence of a target being re-started. Notice how the restart does not get any
direct output:

-> R00
<- +
target restarts
-> ?
<- +
<- T001:1234123412341234
-> +

Example sequence of a target being stepped by a single instruction:
-> G1445...
<- +
-> s
<- +
time passes
<- T001:1234123412341234
-> +
-> g
<- +
<- 1455...
-> +

294 Debugging with GDB

Appendix E: GNU GENERAL PUBLIC LICENSE 295

Appendix E GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

296 Debugging with GDB

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Appendix E: GNU GENERAL PUBLIC LICENSE 297

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

298 Debugging with GDB

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

Appendix E: GNU GENERAL PUBLIC LICENSE 299

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

300 Debugging with GDB

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit

Appendix E: GNU GENERAL PUBLIC LICENSE 301

linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

302 Debugging with GDB

Appendix F: GNU Free Documentation License 303

Appendix F GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you.”

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

304 Debugging with GDB

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long

Appendix F: GNU Free Documentation License 305

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).
C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the

306 Debugging with GDB

Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.
K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.
M. Delete any section entitled “Endorsements.” Such a section may not be included in
the Modified Version.
N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,

Appendix F: GNU Free Documentation License 307

unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications.” You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement

308 Debugging with GDB

between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled "GNU
Free Documentation License."

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 309

Index

!
! packet . 284

#
(a comment) . 17
in Modula-2 . 117

$
$. 75
$$. 75
$_ and info breakpoints . 36
$_ and info line . 60
$_, $__, and value history . 68
$_, convenience variable . 76
$__, convenience variable . 76
$_exitcode, convenience variable 76
$bpnum, convenience variable 34
$cdir, convenience variable 59
$cwdr, convenience variable 59
$tpnum . 88
$trace_file . 94
$trace_frame . 94
$trace_func . 94
$trace_line . 94
$tracepoint . 94

-
--annotate . 14
--args . 14
--async . 14
--batch . 13
--baud . 14
--cd . 14
--command . 12
--core . 12
--directory . 12
--epoch . 14
--exec . 12
--fullname . 14
--interpreter . 15
--mapped . 12
--noasync . 14
--nowindows . 13
--nx . 13
--pid . 12
--quiet . 13
--readnow . 13
--se . 12
--silent . 13
--statistics . 15
--symbols . 12

--tty . 14
--tui . 14
--version . 15
--windows . 13
--write . 15
-b . 14
-break-after . 199
-break-condition . 199
-break-delete . 200
-break-disable . 201
-break-enable . 201
-break-info . 202
-break-insert . 202
-break-list . 203
-break-watch . 205
-c . 12
-d . 12
-data-disassemble . 207
-data-evaluate-expression 209
-data-list-changed-registers 210
-data-list-register-names 210
-data-list-register-values 211
-data-read-memory . 213
-display-delete . 214
-display-disable . 215
-display-enable . 215
-display-insert . 215
-display-list . 216
-e . 12
-environment-cd . 216
-environment-directory 216
-environment-path . 217
-environment-pwd . 217
-exec-abort . 218
-exec-arguments . 218
-exec-continue . 219
-exec-finish . 219
-exec-interrupt . 220
-exec-next . 221
-exec-next-instruction 221
-exec-return . 222
-exec-run . 222
-exec-show-arguments. 223
-exec-step . 223
-exec-step-instruction 224
-exec-until . 224
-f . 14
-file-exec-and-symbols 225
-file-exec-file . 225
-file-list-exec-sections 226
-file-list-exec-source-files 226
-file-list-shared-libraries 226
-file-list-symbol-files 227
-file-symbol-file . 227
-gdb-exit . 227

310 Debugging with GDB

-gdb-set . 228

-gdb-show . 228

-gdb-version . 229

-m . 12

-n . 13

-nw . 13

-p . 12

-q . 13

-r . 13

-s . 12

-stack-info-depth . 229

-stack-info-frame . 229

-stack-list-arguments . 230

-stack-list-frames . 232

-stack-list-locals . 233

-stack-select-frame . 234

-symbol-info-address. 234

-symbol-info-file . 234

-symbol-info-function . 235

-symbol-info-line . 235

-symbol-info-symbol . 235

-symbol-list-functions 236

-symbol-list-types . 236

-symbol-list-variables 236

-symbol-locate . 236

-symbol-type . 237

-t . 14

-target-attach . 237

-target-compare-sections 237

-target-detach . 238

-target-download . 238

-target-exec-status . 240

-target-list-available-targets 240

-target-list-current-targets 241

-target-list-parameters 241

-target-select . 241

-thread-info . 242

-thread-list-all-threads 242

-thread-list-ids . 242

-thread-select . 243

-var-assign . 247

-var-create . 245

-var-delete . 245

-var-evaluate-expression 247

-var-info-expression. 247

-var-info-num-children 246

-var-info-type . 246

-var-list-children . 246

-var-set-format . 246

-var-show-attributes. 247

-var-show-format . 246

-var-update . 247

-w . 13

-x . 12

.

., Modula-2 scope operator 117
‘.esgdbinit’ . 174
‘.gdbinit’ . 173
‘.o’ files, reading symbols from 129
‘.os68gdbinit’ . 174
‘.vxgdbinit’ . 173

/
/proc . 147

:
::, context for variables/functions 64
::, in Modula-2 . 117

?
? packet . 284

@
@, referencing memory as an array. 65

^
^done . 197
^error . 197
^running . 197

‘
“No symbol "foo" in current context” 65

{
{type} . 64

A
A packet . 284
a.out and C++ . 110
abbreviation . 17
abort (C-g) . 269
accept-line (Newline, Return) 264
acknowledgment, for GDB remote 283
actions . 89
active targets . 135
add-shared-symbol-file 130
add-symbol-file . 129
address of a symbol . 119
Alpha stack . 163
AMD 29K register stack . 163
annotations . 185
annotations for breakpoints 190
annotations for display . 189

Index 311

annotations for errors, warnings and interrupts
. 190

annotations for frames . 187
annotations for invalidation messages 191
annotations for prompts . 189
annotations for running programs 191
annotations for source display 192
annotations for values . 186
append . 80
append binary. 80
append data to a file . 80
apropos . 20
arg-begin . 186
arg-end . 186
arg-name-end . 186
arg-value . 186
arguments (to your program) 25
array-section-end . 187
artificial array . 65
assembly instructions . 60
assignment . 123
async output in gdb/mi . 195
AT&T disassembly flavor . 60
attach . 27
automatic display . 68
automatic overlay debugging. 100
automatic thread selection . 30
awatch . 37

B
b (break) . 34
b packet . 284
B packet . 285
backtrace . 54
backtraces. 54
backward-char (C-b) . 264
backward-delete-char (Rubout) 266
backward-kill-line (C-x Rubout) 266
backward-kill-word (M-DEL) 267
backward-word (M-b) . 264
beginning-of-history (M-<) 265
beginning-of-line (C-a) 264
bell-style . 256
break . 34
break ... thread threadno 50
break in overloaded functions 112
breakpoint . 192
breakpoint commands . 43
breakpoint commands for gdb/mi 199
breakpoint conditions . 42
breakpoint numbers . 33
breakpoint on events . 33
breakpoint on memory address 33
breakpoint on variable modification 33
breakpoint ranges . 33
breakpoint subroutine, remote 142
breakpoints . 33

breakpoints and threads . 50
breakpoints in overlays . 100
breakpoints-headers . 190
breakpoints-invalid . 191
breakpoints-table . 190
breakpoints-table-end . 191
bt (backtrace) . 54
bug criteria . 249
bug reports . 249
bugs in GDB . 249

C
c (continue) . 46
c (SingleKey TUI key) . 179
C and C++ . 107
C and C++ checks . 111
C and C++ constants . 109
C and C++ defaults . 111
C and C++ operators . 108
c packet . 285
C packet . 285
C++ . 107
C++ and object formats . 110
C++ exception handling . 112
C++ scope resolution . 64
C++ support, not in coff 110
C++ symbol decoding style 73
C++ symbol display . 112
C-L . 179
C-o (operate-and-get-next) 17
C-x 1 . 178
C-x 2 . 178
C-x a . 178
C-x A . 178
C-x C-a . 178
C-x s . 178
call . 126
call overloaded functions . 110
call stack . 53
call-last-kbd-macro (C-x e) 268
calling functions . 126
calling make . 16
capitalize-word (M-c) . 266
casts, to view memory . 64
catch . 39
catch catch . 39
catch exceptions, list active handlers 56
catch exec . 39
catch fork . 39
catch load . 39
catch throw . 39
catch unload . 39
catch vfork . 39
catchpoints . 33
catchpoints, setting . 39
cd . 26
cdir . 59

312 Debugging with GDB

character-search (C-]) . 269
character-search-backward (M-C-]) 269
checks, range . 106
checks, type . 105
checksum, for GDB remote 283
choosing target byte order 137
clear . 40
clear-screen (C-l) . 264
clearing breakpoints, watchpoints, catchpoints . . 40
coff versus C++ . 110
collect (tracepoints) . 89
collected data discarded . 91
colon, doubled as scope operator 117
colon-colon, context for variables/functions 64
command editing . 253
command files . 173
command hooks . 172
command line editing . 165
commands . 43, 189
commands for C++ . 112
commands to STDBUG (ST2000) 162
comment . 17
comment-begin . 256
compatibility, gdb/mi and CLI 197
compilation directory . 59
compiling, on Sparclet . 160
complete . 20
complete (TAB) . 268
completion . 17
completion of quoted strings 18
completion-query-items 257
condition . 42
conditional breakpoints . 42
configuring GDB . 277
confirmation . 168
connect (to STDBUG) . 162
console output in gdb/mi 195
continue . 46
continuing . 45
continuing threads . 50
control C, and remote debugging 143
controlling terminal . 27
convenience variables . 76
convenience variables for tracepoints 94
convert-meta . 257
copy-backward-word () . 267
copy-forward-word () . 267
copy-region-as-kill () . 267
core . 128
core dump file . 127
core-file . 128
crash of debugger . 249
current directory. 59
current stack frame . 54
current thread . 29
cwd . 59
Cygwin-specific commands 149

D
d (delete) . 40
d (SingleKey TUI key) . 179
d packet . 285
D packet . 285
data manipulation, in gdb/mi 207
debugger crash . 249
debugging optimized code . 23
debugging stub, example . 141
debugging target . 135
define . 171
defining macros interactively 83
definition, showing a macro’s 83
delete . 40
delete breakpoints . 40
delete display . 69
delete mem . 79
delete tracepoint . 88
delete-char (C-d) . 265
delete-char-or-list () . 268
delete-horizontal-space () 267
deleting breakpoints, watchpoints, catchpoints

. 40
demangling . 73
descriptor tables display . 147
detach . 28
device . 153
digit-argument (M-0, M-1, ... M--) 267
dir . 59
direct memory access (DMA) on MS-DOS 148
directories for source files . 59
directory . 59
directory, compilation . 59
directory, current . 59
dis (disable) . 41
disable . 41
disable breakpoints . 41
disable display . 69
disable mem . 79
disable tracepoint . 88
disable-completion . 257
disassemble . 60
display . 69
display of expressions . 68
display-begin . 189
display-end . 189
display-expression . 189
display-expression-end 189
display-format . 189
display-number-end . 189
display-value . 189
djgpp debugging . 147
dll-symbols . 149
do (down) . 55
do-uppercase-version (M-a, M-b, M-x, ...)

. 269
document . 171
documentation . 275

Index 313

down . 55
Down . 179
down-silently . 55
downcase-word (M-l) . 266
download to H8/300 or H8/500 153
download to Hitachi SH . 153
download to Nindy-960 . 155
download to Sparclet . 161
download to VxWorks . 151
dump . 80
dump all data collected at tracepoint 93
dump binary . 80
dump data to a file . 80
dump ihex . 80
dump srec . 80
dump tekhex . 81
dump-functions () . 269
dump-macros () . 270
dump-variables () . 270
dump/restore files . 80
dynamic linking . 129

E
echo . 174
ecoff and C++ . 110
editing . 165
editing command lines . 253
editing-mode . 257
elf/dwarf and C++ . 110
elf/stabs and C++. 110
else . 171
elt . 187
elt-rep . 187
elt-rep-end . 187
Emacs . 183
enable . 41
enable breakpoints . 41
enable display . 69
enable mem . 79
enable tracepoint . 88
enable-keypad . 257
end . 43
end-kbd-macro (C-x)) . 268
end-of-history (M->) . 265
end-of-line (C-e) . 264
entering numbers . 167
environment (of your program) 25
error . 190
error on valid input . 249
error-begin . 190
event designators . 271
event handling . 39
examining data . 63
examining memory . 67
exception handlers . 39
exception handlers, how to list 56
exceptionHandler . 143

exchange-point-and-mark (C-x C-x) 269
exec-file . 127
executable file . 127
exited . 191
exiting GDB . 15
expand-tilde . 257
expanding preprocessor macros 83
expressions . 63
expressions in C or C++ . 107
expressions in C++ . 110
expressions in Modula-2 . 113

F
f (frame) . 55
f (SingleKey TUI key) . 179
fatal signal . 249
fatal signals . 48
fg (resume foreground execution) 46
field . 190
field-begin . 186
field-end . 186
field-name-end . 186
field-value . 186
file . 127
find trace snapshot. 91
finish . 47
flinching . 168
floating point . 78
floating point registers . 77
floating point, MIPS remote 158
flush_i_cache . 143
focus . 180
focus of debugging . 29
foo . 133
fork, debugging programs which call 30
format options . 70
formatted output . 66
Fortran . 1
forward-backward-delete-char () 266
forward-char (C-f) . 264
forward-search . 58
forward-search-history (C-s) 265
forward-word (M-f) . 264
frame number . 53
frame pointer . 53
frame, command . 54
frame, definition . 53
frame, selecting . 55
frame-address . 188
frame-address-end . 188
frame-args . 188
frame-begin . 187
frame-end . 187
frame-function-name . 188
frame-source-begin . 188
frame-source-end . 188
frame-source-file . 188

314 Debugging with GDB

frame-source-file-end . 188
frame-source-line . 188
frame-where . 188
frameless execution . 53
frames-invalid . 191
free memory information (MS-DOS) 147
Fujitsu . 142
function-call . 187
functions without line info, and stepping 47

G
g packet . 285
G packet . 285
g++, gnu C++ compiler . 107
garbled pointers . 148
GDB bugs, reporting . 249
GDB reference card . 275
‘gdb.ini’ . 173
gdb/mi, breakpoint commands 199
gdb/mi, compatibility with CLI 197
gdb/mi, data manipulation 207
gdb/mi, input syntax . 193
gdb/mi, its purpose . 193
gdb/mi, out-of-band records 198
gdb/mi, output syntax . 194
gdb/mi, result records . 197
gdb/mi, simple examples . 196
gdb/mi, stream records . 197
GDBHISTFILE . 165
gdbserve.nlm . 140
gdbserver . 139
GDT . 147
getDebugChar . 143
gnu C++ . 107
gnu Emacs . 183

H
h (help) . 19
H packet . 286
H8/300 or H8/500 download 153
handle . 49
handle_exception . 142
handling signals . 49
hardware watchpoints . 37
hbreak . 35
help . 19
help target . 135
help user-defined . 171
heuristic-fence-post (Alpha, MIPS) 163
history events . 271
history expansion . 166, 271
history file . 165
history number . 75
history save . 166
history size . 166
history substitution . 165

history-search-backward () 265
history-search-forward () 265
Hitachi . 142
Hitachi SH download. 153
hook . 172
hook- . 172
hookpost . 172
hookpost- . 172
hooks, for commands. 172
hooks, post-command . 172
hooks, pre-command . 172
horizontal-scroll-mode 257

I
i (info) . 20
i packet . 286
I packet . 286
i/o . 26
i386 . 141
‘i386-stub.c’ . 141
i960 . 155
IDT . 147
if . 171
ignore . 43
ignore count (of breakpoint) 43
INCLUDE_RDB . 151
info . 20
info address. 119
info all-registers . 77
info args . 56
info breakpoints . 36
info catch . 56
info display . 69
info dll . 149
info dos . 147
info extensions . 105
info f (info frame) . 56
info files . 130
info float . 78
info frame . 56
info frame, show the source language 104
info functions . 121
info line . 60
info locals . 56
info macro . 83
info mem . 79
info proc . 147
info proc mappings . 147
info program . 33
info registers . 77
info s (info stack) . 54
info scope . 120
info set . 21
info share . 132
info sharedlibrary . 132
info signals . 49
info source . 120

Index 315

info source, show the source language 104
info sources. 121
info stack . 54
info symbol . 119
info target . 130
info terminal. 27
info threads . 29
info tracepoints . 90
info types . 120
info variables . 121
info vector . 78
info w32 . 149
info watchpoints . 37
info win . 179
information about tracepoints 90
inheritance . 112
init file . 173
init file name . 173
initial frame . 53
initialization file, readline. 256
innermost frame . 53
input syntax for gdb/mi . 193
input-meta . 257
insert-comment (M-#) . 269
insert-completions (M-*) 268
inspect . 63
installation . 277
instructions, assembly . 60
Intel . 141
Intel disassembly flavor . 60
interaction, readline . 253
internal commands . 281
internal GDB breakpoints . 36
interrupt . 15
interrupting remote programs 145
interrupting remote targets 143
invalid input . 249
isearch-terminators . 257

J
jump . 124

K
k packet . 286
kernel object . 138
kernel object display . 138
keymap . 258
kill . 28
kill ring . 255
kill-line (C-k) . 266
kill-region () . 267
kill-whole-line () . 267
kill-word (M-d) . 267
killing text . 254
KOD . 138

L
l (list) . 57
languages . 103
last tracepoint number . 88
latest breakpoint . 34
layout asm . 180
layout next . 180
layout prev . 180
layout regs . 180
layout split. 180
layout src . 180
LDT . 147
leaving GDB . 15
Left . 179
linespec . 57
list . 57
list output in gdb/mi . 196
listing machine instructions 60
listing mapped overlays . 99
load address, overlay’s. 97
load filename . 137
local variables . 120
locate address . 66
log output in gdb/mi . 196

M
m packet . 286
M packet . 287
m680x0 . 142
‘m68k-stub.c’ . 142
machine instructions . 60
macro define . 83
macro definition, showing . 83
macro expand . 83
macro expand-once . 83
macro expansion, showing the results of

preprocessor . 83
macro undef . 84
macros, example of debugging with. 84
macros, user-defined . 83
maint info breakpoints . 281
maint info sections . 130
maint print cooked-registers 281
maint print psymbols . 122
maint print raw-registers 281
maint print registers . 281
maint print symbols . 122
maintenance commands . 281
make . 16
manual overlay debugging . 99
map an overlay . 99
mapped . 128
mapped address . 97
mapped overlays . 97
mark-modified-lines . 258
mem . 79
member functions . 110

316 Debugging with GDB

memory models, H8/500 . 155

memory region attributes . 78

memory tracing . 33

memory, viewing as typed object 64

memory-mapped symbol file 128

memset . 143

menu-complete () . 268

meta-flag . 257

MIPS boards . 157

MIPS remote floating point 158

MIPS remotedebug protocol 158

MIPS stack . 163

Modula-2 . 1

Modula-2 built-ins . 114

Modula-2 checks . 116

Modula-2 constants . 115

Modula-2 defaults . 116

Modula-2 operators . 113

Modula-2, deviations from 116

Modula-2, GDB support . 113

Motorola 680x0 . 142

MS Windows debugging . 149

MS-DOS system info . 147

MS-DOS-specific commands 147

multiple processes . 30

multiple targets . 135

multiple threads . 28

N
n (next) . 47

n (SingleKey TUI key) . 179

names of symbols . 119

namespace in C++ . 110

native Cygwin debugging . 149

native djgpp debugging . 147

negative breakpoint numbers 36

New systag message . 29

New systag message, on HP-UX 29

next . 47

next-history (C-n) . 264

nexti . 48

ni (nexti) . 48

Nindy . 155

non-incremental-forward-search-history (M-n)

. 265

non-incremental-reverse-search-history (M-p)

. 265

notation, readline . 253

notational conventions, for gdb/mi 193

notify output in gdb/mi. 195

number representation . 167

numbers for breakpoints . 33

O
object files, relocatable, reading symbols from

. 129
object formats and C++ . 110
online documentation . 19
optimized code, debugging . 23
out-of-band records in gdb/mi 198
outermost frame . 53
output . 174
output formats . 66
output syntax of gdb/mi . 194
output-meta . 258
overlay area . 97
overlay auto . 99
overlay example program . 101
overlay load-target . 99
overlay manual . 99
overlay map-overlay . 99
overlay off . 99
overlay unmap-overlay . 99
overlays . 97
overlays, setting breakpoints in 100
overload-choice . 189
overloaded functions, calling 110
overloaded functions, overload resolution 112
overloading . 44
overloading in C++ . 112

P
p packet . 287
P packet . 287
packets, reporting on stdout 169
page tables display (MS-DOS) 148
partial symbol dump . 122
Pascal . 1
passcount . 88
patching binaries . 126
path . 25
pauses in output . 167
PgDn . 179
PgUp . 179
physical address from linear address 148
pipes . 24
pointer, finding referent . 71
possible-completions (M-?) 268
post-commands . 189
post-overload-choice. 189
post-prompt . 189
post-prompt-for-continue 190
post-query . 190
pre-commands . 189
pre-overload-choice . 189
pre-prompt . 189
pre-prompt-for-continue 190
pre-query . 190
prefix-meta (ESC) . 269

Index 317

preprocessor macro expansion, showing the results
of . 83

previous-history (C-p) . 264
print . 63
print settings . 70
printf . 175
printing data . 63
process image . 147
processes, multiple . 30
prompt . 165
prompt . 189
prompt-for-continue . 190
protocol, GDB remote serial 283
ptype . 119
putDebugChar . 143
pwd . 26

Q
q (quit) . 15
q (SingleKey TUI key) . 179
q packet . 287
Q packet . 287
query . 190
quit . 190
quit [expression] . 15
quoted-insert (C-q, C-v) 266
quotes in commands . 18
quoting names . 119

R
r (run). 24
r (SingleKey TUI key) . 179
r packet . 288
R packet . 288
raise exceptions . 39
range checking . 106
ranges of breakpoints . 33
rbreak . 35
re-read-init-file (C-x C-r) 269
reading symbols from relocatable object files . . 129
reading symbols immediately 128
readline . 165
readnow . 128
recent tracepoint number . 88
record . 190
redirection . 26
redraw-current-line () . 264
reference card . 275
reference declarations . 111
refresh . 180
register stack, AMD29K . 163
registers. 77
regular expression. 35
reloading symbols . 121
reloading the overlay table . 99
relocatable object files, reading symbols from . . 129

remote connection without stubs 139
remote debugging . 137
remote programs, interrupting 145
remote protocol, field separator 283
remote serial debugging summary 144
remote serial debugging, overview 141
remote serial protocol . 283
remote serial stub. 142
remote serial stub list . 141
remote serial stub, initialization 142
remote serial stub, main routine 142
remote stub, example . 141
remote stub, support routines. 142
remotedebug, MIPS protocol 158
remotetimeout . 160
remove actions from a tracepoint 89
repeating command sequences 17
repeating commands . 17
reporting bugs in GDB . 249
reset . 156
response time, MIPS debugging 163
restore . 80
restore data from a file . 80
result records in gdb/mi . 197
resuming execution . 45
RET (repeat last command) 17
retransmit-timeout, MIPS protocol 159
return . 125
returning from a function 125
reverse-search . 58
reverse-search-history (C-r) 265
revert-line (M-r) . 269
Right . 179
run . 24
running . 24
running and debugging Sparclet programs 161
running VxWorks tasks . 152
running, on Sparclet . 160
rwatch . 37

S
s (SingleKey TUI key) . 179
s (step) . 46
s packet . 288
S packet . 288
save tracepoints for future sessions 94
save-tracepoints . 94
saving symbol table . 128
scope . 117
search . 58
searching . 58
section . 130
segment descriptor tables . 147
select trace snapshot . 91
select-frame . 54
selected frame . 53
selecting frame silently . 54

318 Debugging with GDB

self-insert (a, b, A, 1, !, ...) 266
sequence-id, for GDB remote 283
serial connections, debugging 169
serial device, Hitachi micros 153
serial line speed, Hitachi micros 153
serial line, target remote 144
serial protocol, GDB remote 283
server prefix for annotations 185
set . 20
set args . 25
set auto-solib-add . 131
set auto-solib-limit . 132
set check range . 107
set check type . 106
set check, range . 107
set check, type . 106
set complaints . 168
set confirm . 168
set debug arch . 169
set debug event . 169
set debug expression . 169
set debug overload . 169
set debug remote . 169
set debug serial . 169
set debug target . 169
set debug varobj . 169
set debugevents . 150
set debugexceptions . 150
set debugexec . 150
set debugmemory . 150
set demangle-style . 73
set disassembly-flavor . 60
set editing . 165
set endian auto . 137
set endian big . 137
set endian little. 137
set environment . 26
set extension-language . 105
set follow-fork-mode . 31
set gnutarget . 136
set height . 167
set history expansion . 166
set history filename . 165
set history save . 166
set history size . 166
set input-radix . 167
set language. 104
set listsize . 57
set machine . 155
set max-user-call-depth 172
set memory mod . 155
set mipsfpu . 158
set new-console . 149
set new-group . 149
set opaque-type-resolution 121
set output-radix . 167
set overload-resolution 112
set print address . 70

set print array . 71
set print asm-demangle . 73
set print demangle . 73
set print elements . 71
set print max-symbolic-offset 71
set print null-stop . 72
set print object . 74
set print pretty . 72
set print sevenbit-strings 72
set print static-members 74
set print symbol-filename 70
set print union . 72
set print vtbl . 74
set processor args . 158
set prompt . 165
set remotedebug, MIPS protocol 158
set retransmit-timeout . 159
set rstack_high_address 163
set shell . 150
set step-mode. 47
set symbol-reloading . 121
set timeout . 159
set tracepoint . 87
set trust-readonly-sections 131
set tui active-border-mode 180
set tui border-kind . 180
set tui border-mode . 180
set variable. 123
set verbose . 168
set width . 167
set write . 126
set-mark (C-@) . 269
set_debug_traps . 142
setting variables . 123
setting watchpoints . 37
SH . 142
‘sh-stub.c’ . 142
share . 132
shared libraries . 131
sharedlibrary . 132
shell . 15
shell escape . 15
show . 21
show args . 25
show auto-solib-add . 132
show auto-solib-limit . 132
show check range . 107
show check type . 106
show complaints . 168
show confirm. 168
show convenience . 76
show copying . 21
show debug arch . 169
show debug event . 169
show debug expression . 169
show debug overload . 169
show debug remote. 169
show debug serial. 169

Index 319

show debug target. 169
show debug varobj. 169
show demangle-style . 74
show directories . 59
show editing. 165
show environment . 25
show gnutarget . 136
show height . 167
show history. 166
show input-radix . 167
show language . 104
show listsize. 57
show machine. 155
show max-user-call-depth 172
show mipsfpu. 158
show new-console . 149
show new-group . 150
show opaque-type-resolution 122
show output-radix . 168
show paths . 25
show print address . 70
show print array . 71
show print asm-demangle . 73
show print demangle . 73
show print elements . 72
show print max-symbolic-offset. 71
show print object . 74
show print pretty . 72
show print sevenbit-strings 72
show print static-members 74
show print symbol-filename 71
show print union . 73
show print vtbl . 74
show processor . 158
show prompt . 165
show remotedebug, MIPS protocol 158
show retransmit-timeout 159
show rstack_high_address 163
show shell . 150
show symbol-reloading . 121
show timeout. 159
show user . 172
show values . 75
show verbose. 168
show version . 21
show warranty. 21
show width . 167
show write . 126
show-all-if-ambiguous . 258
shows . 166
si (stepi) . 48
signal . 125, 192
signal-handler-caller . 188
signal-name . 191
signal-name-end . 191
signal-string . 191
signal-string-end . 191
signalled . 191

signals . 48

silent . 44

sim . 162

simulator, Z8000 . 162

size of screen . 167

software watchpoints . 37

source . 174, 192

source path . 59

Sparc . 142

‘sparc-stub.c’ . 142

‘sparcl-stub.c’ . 142

Sparclet . 160

SparcLite . 142

speed . 153

ST2000 auxiliary commands 162

st2000 cmd . 162

stack frame. 53

stack on Alpha . 163

stack on MIPS . 163

stack traces . 54

stacking targets. 135

start a new trace experiment 91

start-kbd-macro (C-x () 268

starting . 24

starting . 191

status of trace data collection 91

status output in gdb/mi . 195

STDBUG commands (ST2000) 162

step . 46

stepi . 48

stepping . 45

stepping into functions with no line info 47

stop a running trace experiment 91

stop reply packets . 289

stop, a pseudo-command . 172

stopped threads . 50

stopping . 191

stream records in gdb/mi 197

stub example, remote debugging 141

stupid questions . 168

switching threads . 28

switching threads automatically 30

symbol decoding style, C++ 73

symbol dump . 122

symbol from address . 119

symbol names . 119

symbol overloading . 44

symbol table . 127

symbol-file . 127

symbols, reading from relocatable object files . . 129

symbols, reading immediately 128

sysinfo . 147

320 Debugging with GDB

T
t packet . 288
T packet . 288
T packet reply . 289
tab-insert (M-TAB) . 266
target . 135
target abug . 157
target array. 158
target byte order . 137
target core . 136
target cpu32bug . 157
target dbug . 157
target ddb port . 158
target dink32 . 159
target e7000, with H8/300 152
target e7000, with Hitachi ICE 154
target e7000, with Hitachi SH 159
target es1800 . 157
target est . 157
target exec . 136
target hms, and serial protocol 154
target hms, with H8/300 . 152
target hms, with Hitachi SH 159
target lsi port . 158
target m32r . 156
target mips port . 157
target mon960 . 155
target nindy. 155
target nrom . 137
target op50n. 159
target output in gdb/mi . 195
target pmon port . 158
target ppcbug . 159
target ppcbug1 . 159
target r3900. 158
target rdi . 152
target rdp . 152
target remote . 136
target rom68k . 157
target rombug . 157
target sds . 159
target sh3, with H8/300 . 152
target sh3, with SH . 159
target sh3e, with H8/300 152
target sh3e, with SH . 159
target sim . 136
target sim, with Z8000 . 162
target sparclite . 161
target vxworks . 150
target w89k . 159
tbreak . 35
TCP port, target remote 144
tdump . 93
terminal . 26
tfind . 91
thbreak . 35
this, inside C++ member functions 110
thread apply . 30

thread breakpoints . 50
thread identifier (GDB) . 29
thread identifier (system) . 29
thread identifier (system), on HP-UX. 29
thread number . 29
thread threadno . 30
threads and watchpoints . 38
threads of execution . 28
threads, automatic switching 30
threads, continuing . 50
threads, stopped . 50
tilde-expand (M-~) . 269
timeout, MIPS protocol . 159
trace . 87
trace experiment, status of 91
tracebacks. 54
tracepoint actions . 89
tracepoint data, display . 93
tracepoint deletion . 88
tracepoint number . 88
tracepoint pass count . 88
tracepoint variables . 94
tracepoints . 87
transpose-chars (C-t) . 266
transpose-words (M-t) . 266
tstart . 91
tstatus . 91
tstop . 91
tty . 27
TUI . 177
TUI commands . 179
TUI configuration variables 180
TUI key bindings . 178
TUI single key mode . 179
type casting memory . 64
type checking . 105
type conversions in C++ . 110

U
u (SingleKey TUI key) . 179
u (until) . 47
UDP port, target remote 144
undisplay . 69
undo (C-_, C-x C-u) . 269
universal-argument () . 267
unix-line-discard (C-u) 266
unix-word-rubout (C-w) . 267
unknown address, locating . 66
unmap an overlay . 99
unmapped overlays . 97
unset environment . 26
until . 47
up . 55
Up . 179
up-silently . 55
upcase-word (M-u) . 266
update . 180

Index 321

user-defined command . 171
user-defined macros . 83

V
v (SingleKey TUI key) . 179
value history . 75
value-begin . 186
value-end . 186
value-history-begin . 186
value-history-end . 186
value-history-value . 186
variable name conflict . 64
variable objects in gdb/mi 244
variable values, wrong . 64
variables, setting. 123
vector unit . 78
version number . 21
visible-stats . 258
VxWorks . 150
vxworks-timeout . 151

W
w (SingleKey TUI key) . 179
watch . 37
watchpoint . 192
watchpoints . 33
watchpoints and threads . 38
whatis . 119
where . 54
while . 171

while-stepping (tracepoints) 90
wild pointer, interpreting . 71
winheight . 180
word completion . 17
working directory . 59
working directory (of your program) 26
working language . 103
writing into corefiles . 126
writing into executables . 126
wrong values . 64

X
x (examine memory) . 67
X packet . 288
x(examine), and info line 60
xcoff and C++ . 110

Y
yank (C-y) . 267
yank-last-arg (M-., M-_) 265
yank-nth-arg (M-C-y) . 265
yank-pop (M-y) . 267
yanking text . 254

Z
z packet . 289
Z packet . 289
Z8000 . 162
Zilog Z8000 simulator . 162

322 Debugging with GDB

The body of this manual is set in
cmr10 at 10.95pt,

with headings in cmb10 at 10.95pt
and examples in cmtt10 at 10.95pt.

cmti10 at 10.95pt ,
cmb10 at 10.95pt, and

cmsl10 at 10.95pt
are used for emphasis.

	Summary of GDB
	Free software
	Free Software Needs Free Documentation
	Contributors to GDB
	A Sample GDB Session
	Getting In and Out of GDB
	Invoking GDB
	Choosing files
	Choosing modes

	Quitting GDB
	Shell commands

	GDB Commands
	Command syntax
	Command completion
	Getting help

	Running Programs Under GDB
	Compiling for debugging
	Starting your program
	Your program's arguments
	Your program's environment
	Your program's working directory
	Your program's input and output
	Debugging an already-running process
	Killing the child process
	Debugging programs with multiple threads
	Debugging programs with multiple processes

	Stopping and Continuing
	Breakpoints, watchpoints, and catchpoints
	Setting breakpoints
	Setting watchpoints
	Setting catchpoints
	Deleting breakpoints
	Disabling breakpoints
	Break conditions
	Breakpoint command lists
	Breakpoint menus
	``Cannot insert breakpoints''

	Continuing and stepping
	Signals
	Stopping and starting multi-thread programs

	Examining the Stack
	Stack frames
	Backtraces
	Selecting a frame
	Information about a frame

	Examining Source Files
	Printing source lines
	Searching source files
	Specifying source directories
	Source and machine code

	Examining Data
	Expressions
	Program variables
	Artificial arrays
	Output formats
	Examining memory
	Automatic display
	Print settings
	Value history
	Convenience variables
	Registers
	Floating point hardware
	Vector Unit
	Memory region attributes
	Attributes
	Memory Access Mode
	Memory Access Size
	Data Cache

	Copy between memory and a file

	C Preprocessor Macros
	Tracepoints
	Commands to Set Tracepoints
	Create and Delete Tracepoints
	Enable and Disable Tracepoints
	Tracepoint Passcounts
	Tracepoint Action Lists
	Listing Tracepoints
	Starting and Stopping Trace Experiment

	Using the collected data
	tfind n
	tdump
	save-tracepoints filename

	Convenience Variables for Tracepoints

	Debugging Programs That Use Overlays
	How Overlays Work
	Overlay Commands
	Automatic Overlay Debugging
	Overlay Sample Program

	Using GDB with Different Languages
	Switching between source languages
	List of filename extensions and languages
	Setting the working language
	Having GDB infer the source language

	Displaying the language
	Type and range checking
	An overview of type checking
	An overview of range checking

	Supported languages
	C and C{@char 43}{@char 43}
	C and C{@char 43}{@char 43} operators
	C and C{@char 43}{@char 43} constants
	C{@char 43}{@char 43} expressions
	C and C{@char 43}{@char 43} defaults
	C and C{@char 43}{@char 43} type and range checks
	GDB and C
	GDB features for C{@char 43}{@char 43}

	Modula-2
	Operators
	Built-in functions and procedures
	Constants
	Modula-2 defaults
	Deviations from standard Modula-2
	Modula-2 type and range checks
	The scope operators :: and .
	GDB and Modula-2

	Examining the Symbol Table
	Altering Execution
	Assignment to variables
	Continuing at a different address
	Giving your program a signal
	Returning from a function
	Calling program functions
	Patching programs

	GDB Files
	Commands to specify files
	Errors reading symbol files

	Specifying a Debugging Target
	Active targets
	Commands for managing targets
	Choosing target byte order
	Remote debugging
	Kernel Object Display

	Debugging remote programs
	Using the gdbserver program
	Using the gdbserve.nlm program
	Implementing a remote stub
	What the stub can do for you
	What you must do for the stub
	Putting it all together

	Configuration-Specific Information
	Native
	HP-UX
	SVR4 process information
	Features for Debugging djgpp Programs
	Features for Debugging MS Windows PE executables

	Embedded Operating Systems
	Using GDB with VxWorks
	Connecting to VxWorks
	VxWorks download
	Running tasks

	Embedded Processors
	ARM
	Hitachi H8/300
	Connecting to Hitachi boards
	Using the E7000 in-circuit emulator
	Special GDB commands for Hitachi micros

	H8/500
	Intel i960
	Startup with Nindy
	Options for Nindy
	Nindy reset command

	Mitsubishi M32R/D
	M68k
	MIPS Embedded
	PowerPC
	HP PA Embedded
	Hitachi SH
	Tsqware Sparclet
	Setting file to debug
	Connecting to Sparclet
	Sparclet download
	Running and debugging

	Fujitsu Sparclite
	Tandem ST2000
	Zilog Z8000

	Architectures
	A29K
	Alpha
	MIPS

	Controlling GDB
	Prompt
	Command editing
	Command history
	Screen size
	Numbers
	Optional warnings and messages
	Optional messages about internal happenings

	Canned Sequences of Commands
	User-defined commands
	User-defined command hooks
	Command files
	Commands for controlled output

	GDB Text User Interface
	TUI overview
	TUI Key Bindings
	TUI Single Key Mode
	TUI specific commands
	TUI configuration variables

	Using GDB under gnu Emacs
	GDB Annotations
	What is an Annotation?
	The Server Prefix
	Values
	Frames
	Displays
	Annotation for GDB Input
	Errors
	Information on Breakpoints
	Invalidation Notices
	Running the Program
	Displaying Source
	Annotations We Might Want in the Future

	The gdb/mi Interface
	Function and Purpose
	Notation and Terminology
	gdb/mi Command Syntax
	gdb/mi Input Syntax
	gdb/mi Output Syntax
	Simple Examples of gdb/mi Interaction

	gdb/mi Compatibility with CLI
	gdb/mi Output Records
	gdb/mi Result Records
	gdb/mi Stream Records
	gdb/mi Out-of-band Records

	gdb/mi Command Description Format
	gdb/mi Breakpoint table commands
	gdb/mi Data Manipulation
	gdb/mi Program control
	Miscellaneous GDB commands in gdb/mi
	gdb/mi Stack Manipulation Commands
	gdb/mi Symbol Query Commands
	gdb/mi Target Manipulation Commands
	gdb/mi Thread Commands
	gdb/mi Tracepoint Commands
	gdb/mi Variable Objects

	Reporting Bugs in GDB
	Have you found a bug?
	How to report bugs

	Command Line Editing
	Introduction to Line Editing
	Readline Interaction
	Readline Bare Essentials
	Readline Movement Commands
	Readline Killing Commands
	Readline Arguments
	Searching for Commands in the History

	Readline Init File
	Readline Init File Syntax
	Conditional Init Constructs
	Sample Init File

	Bindable Readline Commands
	Commands For Moving
	Commands For Manipulating The History
	Commands For Changing Text
	Killing And Yanking
	Specifying Numeric Arguments
	Letting Readline Type For You
	Keyboard Macros
	Some Miscellaneous Commands

	Readline vi Mode

	Using History Interactively
	History Expansion
	Event Designators
	Word Designators
	Modifiers

	Formatting Documentation
	Installing GDB
	Compiling GDB in another directory
	Specifying names for hosts and targets
	configure options

	Maintenance Commands
	GDB Remote Serial Protocol
	Overview
	Packets
	Stop Reply Packets
	General Query Packets
	Register Packet Format
	Examples

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING,@hfil @penalty -@@M @hbox {}@ignorespaces DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Index

