
Common Lisp Coding standards

Robert Strandh

February 2004

ii

c© 2004, Robert Strandh

I intend to distribute this document according to some kind of free license, such
as the GNU Free Documentation License, but I have not had the time to figure out
how it works yet.

Contents

1 Purpose 1

2 Spacing and indentation 3
2.1 Whitespace before and after parentheses 3
2.2 The use of newlines . 6

3 Choice of identifiers 9
3.1 Form of identifiers . 9
3.2 Some conventional use of characters in identifiers 9
3.3 Good naming practice . 10

4 Commenting and documentation strings 13
4.1 Comments . 13
4.2 Purpose of a comment . 13
4.3 How many semicolons to use . 14
4.4 Documentation strings . 14
4.5 Choosing between a comment and a documentation string 15

5 Packages 17
5.1 Declaring packages . 17
5.2 Splitting a package into several files 18

6 Conditionals 19
6.1 When to use cond . 19
6.2 When to use case . 21
6.3 When to use when and unless 22

7 Choice of Common Lisp idioms 25
7.1 let vs let* . 25
7.2 not vs null . 26

iii

iv CONTENTS

7.3 incf, decf, 1+, 1- . 26
7.4 car and cdr vs first and rest . 27
7.5 Using combinations of car and cdr 27
7.6 Accumulating elements into a list 28
7.7 reduce vs apply . 28
7.8 Using setf with more than two arguments 29
7.9 The use of tagbody . 30

8 Using conditions 31

9 Using Common Lisp pathnames 33

10 Multiprocessing/Threading 35
10.1 The Common Lisp treading model 35
10.2 Avoid global state . 36
10.3 Synchronization . 36

11 System construction 37
11.1 The asdf system construction tool 37

12 Object-oriented design 39
12.1 Abstract data types . 39

13 Misc stuff to be inserted in other chapters 41

Chapter 1

Purpose

In any language (natural or programming), the number of idiomatic phrases is
much lower than the number of grammatical phrases.

While members of many programming language communities do not appreciate
the importance of idiomatic code, Common Lisp programmers certainly do. In
fact, whether a Common Lisp program can be understood at all by a maintainer
crucially depends on elementary rules of indentation and naming conventions being
respected.

However, these rules and conventions are often transmitted by “oral tradition” in
the Common Lisp community, making it hard for new programmers to access them.
This document is an attempt to collect those rules and conventions in a single place,
easily accessible to anyone who would like to know.

As with must rules of this type, not everyone agrees in detail with every rule.
Natural languages have dialects that introduce some systematic variation in which
phrases are idiomatic and which ones are not. The same situation is true in pro-
gramming languages. When possible, we have made an attempt to describe several
such dialects of idiomatic Common Lisp programs. If you find that we have not
described some widespread practice, please let us know.

It is our hope that these standards will be adopted by many authors of free soft-
ware projects in Common Lisp. It is therefore recommended that these standards
be followed for contributions of code to one of these projects. It is unlikely that
any project will reject code that does not conform in every detail to these stan-
dards, but if you hesitate in choosing what construction to use, choosing the one

1

2 CHAPTER 1. PURPOSE

recommended here is certainly preferable.

In fact, most rules that are discussed here are widely agreed upon in the Common
Lisp community. Whenever there is disagreement concerning on of the recommen-
dations in this document, we try to mention that fact, why there is disagreement,
and what some of the alternatives are.

Chapter 2

Spacing and indentation

The maintainability of a Common Lisp program crucially depends on the way it is
indented, and on the way that whitespace is used. In this section, we describe the
rules that are widely respected.

In general, the rules for indentation and spacing are designed to be as economical
as possible with a very precious resource, namely whitespace. Whitespace does
not contain any useful information, so between two equally readable versions of
a program with different amount of whitespace, the one with less whitespace is
always preferable.

If you are using GNU Emacs or Xemacs, you have to make sure Emacs uses the
Common Lisp indentation rules as opposed Emacs Lisp indentation rules which are
slightly different. To do so, you have to add the following lines to your .emacs
file:

(require ’cl)
(setq lisp-indent-function ’common-lisp-indent-function)

2.1 Whitespace before and after parentheses

Never put parentheses by themselves on a line.

Certainly, do not attempt any parenthesis balancing scheme like C uses.

3

4 CHAPTER 2. SPACING AND INDENTATION

BAD:

(defun fac (n)
(if (zerop n)

1
(* n

(fac (1- n)
)

)
)

)

GOOD:

(defun fac (n)
(if (zerop n)

1
(* n (fac (1- n)))))

As you can see, several lines containing no information were saved.

It is sometimes tempting to put parentheses by themselves on a line at the end of a
class definition, with the idea that it makes it easier to add new slots later on like
this:

BAD:

(defclass myclass (super)
((slot1 ...)
(slot2 ...)
(slot3 ...)

))

Here, in order to add a slot, one would put the cursor at the beginning of the line
with two parentheses, and type C-o C-i to add a new slot. However it is not much
harder to add a slot to this version:

GOOD:

(defclass myclass (super)

2.1. WHITESPACE BEFORE AND AFTER PARENTHESES 5

((slot1 ...)
(slot2 ...)
(slot3 ...)))

One would simply put the cursor at the beginning of the line with the last slot, type
C-M-f C-j and add the new slot.

Occasionally, it might be necessary to violate this rule, for instance when the last
slot has a comment associated with it like this:

TOLERATED:

(defclass myclass (super)
((slot1 ...)
(slot2 ...)
(slot3 ...) ; a comment
))

Never put whitespace before a closing parenthesis.
Never put whitespace after an opening parenthesis

This rule is true whether the closing parenthesis is preceded by another closing
parenthesis, an opening parenthesis, or some other text like a number or a symbol.

BAD:

(defun fac (n)
(if (zerop n)

1
(* n (fac (1- n)))))

Here, the parameter list is terminated by a parenthesis preceded by a space which
violates the rule. This is better:

GOOD:

(defun fac (n)
(if (zerop n)

1
(* n (fac (1- n)))))

6 CHAPTER 2. SPACING AND INDENTATION

In a sequence of opening parentheses, always put a space before the first one.
In a sequence of closing parentheses, always put a space after the last one.

BAD:

(defun fac(n)
(if (zerop n)

1
(* n (fac (1- n)))))

Here, the name of the function is followed directly by the parenthesis of the pa-
rameter list, which is a direct violation of this rule.

GOOD:

(defun fac (n)
(if (zerop n)

1
(* n (fac (1- n)))))

2.2 The use of newlines

Sometimes, even though a form fits on a line, it is a better idea to split it over
several lines. For one thing, it is usually a good idea to keep the function header
(name and parameter list) on a line by itself:

BAD:

(defun fac (n) (if (zerop n) 1 (* n (fac (1- n)))))

GOOD:

(defun fac (n)
(if (zerop n)

1
(* n (fac (1- n)))))

Though, when the function is very simple, the header and the body can be on the
same line:

2.2. THE USE OF NEWLINES 7

GOOD:

(defun first-arg (a b) a)

When an if-form is used, it is usually a good idea to split the three subexpressions
(condition, then-form, else-form) on different lines:

BAD:

(defun fac (n)
(if (zerop n) 1 (* n (fac (1- n)))))

But when the if-form is simple it can go on a single line:

GOOD:

(defun f (n)
(if (g n) n (1+ n)))

Sometimes, the arguments of a function do not fit the horizontal space, so newlines
need to be introduced. The general rule, then, is to split the arguments so that the
first one is on the same line as the function name, and the others are each one on a
different line:

GOOD:

(myfun (if (g n) n (1+ n))
(compute-highest-value object additional-stuff)
(compute-some-more-values objects different-stuff))

The ordinary rules are applied to each argument, so that it might be split on several
lines:

GOOD:

(myfun (if (zerop n)
1
(* n (fac (1- n))))

(compute-highest-value object additional-stuff)
(compute-some-more-values objects different-stuff))

8 CHAPTER 2. SPACING AND INDENTATION

Chapter 3

Choice of identifiers

3.1 Form of identifiers

Traditionally, Common Lisp identifiers are written in all lower-case letters with hy-
phens separating different words, such as in sheet-mediumor send-to-process.
This practice allows the use of two sets of Emacs commands: commands using
words and commands using expressions. The word commands (M-f, M-b, M-d,
etc) can be used to for the word-constituents of an identifier and the expression
commands (C-M-f, C-M-b, etc) for the entire identifier.

Please do not use so called studly caps (as in SheetMedium and SendToProcess.
Such use looks ugly in Common Lisp, and makes the Emacs word commands use-
less.

Notice that the tradition is to use hyphen (‘-’) as a word separator. Do not use the
underline (‘_’) character to separate words.

3.2 Some conventional use of characters in identifiers

While the Common Lisp standard imposes few restrictions on the form of identi-
fiers, some conventions are widespread, and we highly recommend you use them.

Special variables, and in particular global variables should have asterisks (‘*’)
around their names as in *top-level-frame*.

9

10 CHAPTER 3. CHOICE OF IDENTIFIERS

Constants (i.e., global variables the value of which never change) are surrounded
by plus signs (‘+’) as in +conversion-factor+.

Functions that are mostly used as predicates usually have names that end with the
letter ‘p’. If the name of the function is just one word, the ‘p’ is just attached to the
end of the name, as in biggerp or sequentialp. If the name of the function
has several names (which are then separated by hyphens), ‘-p’ is attached to the
end of the name, as in more-important-p or strongly-sequential-p.
Common Lisp itself mostly follows this convention (endp, zerop,character-alpha-p)
but not always (mostly for historical reasons and in order not to break backward
compatibility) (null, etc). We recommend that you follow this convention in all
new code.

Macros that operate on places usually have names that end with the letter ‘f’.
Again, Common Lisp itself mostly respects this convention (rotatef, setf)
but not always (push, pop). We recommend that you follow this convention in all
new code.

Sometimes, it is necessary to have two different functions or macros that essentially
do the same thing, but whose argument lists (signatures) are not compatible. In this
situation, the tradition is end one of the names with an asterisk (‘*’). Examples can
be found in Common Lisp itself (let, let*, do, do*). We recommend you
follow this practice in new code.

expand http://www.cliki.net/Naming conventions here.

3.3 Good naming practice

An identifier should be easy to understand and read. Its name should suggest what
its purpose is. It should preferably not be too long, but it is better to have a long
identifier than one with an incomprehensible name.

In Common Lisp programs, variables often hold containers such as lists, vectors,
hash tables, etc. Please do not prefix or suffix such variables with the type of con-
tainer or words such as ‘set’, ‘collection’ (as in list-of-boats,window-list,
note-set, etc. The convention is rather to use a simple plural ‘s’ at the end of
such identifiers (as in boats, windows, notes). This practice makes the iden-
tifiers shorter, and also avoids committing to a particular type of container.

Using heavily abbreviated names reveals the ignorance of the developer with re-

3.3. GOOD NAMING PRACTICE 11

spect to important tools such as the text editor. Instead of having identifiers such
as cptwks, use compute-weeks. If you think that requires too much typing,
you have several options: either use Emacs abbrevs so that whenever you type
cptwks, it expands to compute-weeks or use dynamic abbrev expansion (‘M-
/’). If you are using the Slime package for Emacs (which we recommend), you can
also use its completion facility.

12 CHAPTER 3. CHOICE OF IDENTIFIERS

Chapter 4

Commenting and documentation
strings

4.1 Comments

A Common Lisp comment is a sequence of characters starting with a semicolon
and ending with a newline.

4.2 Purpose of a comment

Comments are intended for people reading the source code in a text editor as a
printed output. The purpose of a comment is to supplement the information in the
code whenever doing so will help the reader understand the code.

There should be no duplication of information between the code and the comments.
Such duplication introduces redundancies that are hard to keep synchronized when
the code evolves, in particular since the contents of the comments cannot be verified
by the compiler.

In particular, comments should not be used as headers of definitions of functions
and classes to duplicate information such as the name and the arguments.

Comments should be viewed as a last resort. Whenever the same information can
be stated as compiler-verifiable code, such a solution is always preferable.

13

14 CHAPTER 4. COMMENTING AND DOCUMENTATION STRINGS

4.3 How many semicolons to use

The following convention is used:

• a single semicolon is used for a comment on a line that also has code on it.

• two semicolons are used for a comment on a line that is preceded only by
whitespace. The comment refers to the following line(s), and is indented like
the line that follows it.

• three semicolons are used for a comment that starts in the first column, and
that refers to an entire function, class, or other definition.

• four semicolons are used for a comment that starts in the first column, and
that refers to the entire file or to a large part of the entire file.

Example of Comments:

;;;; This file contains a library for ...

;;; Check for existing connections and reuse them, since we want to be
;;; able to assume a single unique connection between two connected
;;; nodes.
(defun connect (stuff)
(let ((var (thing stuff)))
;; try to see whether connection exists
(when (connection var)
(close-other-stuff var) ; clean up before leaving
(signal ...))))

Notice that editors such as GNU Emacs know about these conventions, and are
able to indent lines accordingly.

4.4 Documentation strings

A documentation string is a character string that appears in certain predetermined
places in the code, such as the first expression in the body of a function, or in a
:documentation clause in the definition of a class or a generic function.

4.5. CHOOSING BETWEEN A COMMENT AND A DOCUMENTATION STRING15

Documentation strings differ from comments in that they are available at runtime.

Documentation strings should be kept short. They lend themselves to comments
that are associated with a particular name (of a function, a class, etc). They do
not lend themselves to general explanations about the workings of a library or an
application.

The first sentence of a documentation string, which should also be the first line,
should be a phrase that by itself gives a short description of the object being de-
scribed, kind of like the headline of a newspaper.

Subsequent text in the documentation string should expand on the description of
the object. This part of the documentation string (in case the object is a function)
could contain preconditions, error situations that might be signaled, and possible
unexpected behavior.

In a documentation string, when you need to refer to function arguments, names
of classes, or other lisp objects, write these names in all uppercase, so that they
are easy to find. It is important that this convention be respected, so that automatic
documentation tools can be used to introduce various markups.

4.5 Choosing between a comment and a documentation
string

Comments are not available at runtime, so the target audience for comments con-
sists of programmers that are reading the source code, for instance in a text editor.

16 CHAPTER 4. COMMENTING AND DOCUMENTATION STRINGS

Chapter 5

Packages

Each software component (library or application) should be put in one or more
packages distinct from the common-lisp-user package.

In this chapter, we discuss how to organize these packages in terms of different
files of the software component.

5.1 Declaring packages

It is preferable to use the declarative interface to the package system (defpackage,
in-package) as opposed to the “programmatic” interface in the form of make-package,
import, and export.

Arguments in defpackage option lists (in particular exported symbols) should
preferably be uninterned symbols (written as the name prefixed with #:). Avoid
using strings so as to avoid dependencies on the case conversion of symbols. Using
keywords is tolerated. In any case, never use ordinary symbols, since they will
be interned in the package that is current when the defpackage form is seen.
The result is multiple, often conflicting symbols with the same name in different
packages.

It is recommended that the defpackage form be put in a file separate from the
code of the component. [remind me what problem this solves].

17

18 CHAPTER 5. PACKAGES

5.2 Splitting a package into several files

If a package is large, it could be a good idea to divide the code for the package into
several files. Each file then contains related definitions.

The first non-comment line in each such file should be a in-package form.

Chapter 6

Conditionals

if vs when vs unless vs cond, vs case

special case first (mental load on maintainer)

structure recursive functions as a proofs by induction

6.1 When to use cond

There are a few cases when cond is preferable to if.

The first such case is the one that cond was designed for, namely when you have
a so called skip chain. Rather than writing:

BAD:

(if condition-1
do-something-1
(if condition-2

do-something-2
do-something-3))

it is preferable to use cond like this:

GOOD:

19

20 CHAPTER 6. CONDITIONALS

(cond (condition-1 do-something-1)
(condition-2 do-something-2)
(t do-something-3))

The second case is when the then or else part of a condition contains several ex-
pressions to evaluate, which would require the use of progn. Instead of writing
like this:

BAD:

(if condition
(progn do-something-1-a

do-something-1-b)
do-something-2)

or

BAD:

(if condition
do-something-1
(progn do-something-2-a

do-something-2-b))

you can write:

GOOD:

(cond (condition do-something-1-a do-something-1-b)
(t do-something-2))

or

GOOD:

(cond (condition do-something-1)
(t do-something-2-a do-something-2-b))

Using cond in this situation saves the progn since cond has an implicit progn
in each clause.

6.2. WHEN TO USE CASE 21

When the actions in a cond clause are too wide to fit on a line, split lines like this:

GOOD:

(cond (condition
do-something-1-a
do-something-1-b
do-something-1-c
do-something-1-d
do-something-1-e
do-something-1-f
do-something-1-g)

(t do-something-2-a do-something-2-b))

The third situation when cond is useful is when the result of a condition must be
returned as the value of the conditional. Instead of writing:

BAD:

(let ((val (complicated-calculation a b c)))
(if val

val
(do-something-else x y z)))

you can use cond like this:

GOOD:

(cond ((complicated-calculation a b c))
(t (do-something-else x y z)))

6.2 When to use case

The case conditional can be seen as a special case of the cond conditional that
solves the problem of testing the value of an expression against a number of con-
stant values.

The reason for the existence of case is that it is much faster than cond for this
special case. In general, the compiler can generate code to search a hash table as
opposed to testing each clause sequentially.

22 CHAPTER 6. CONDITIONALS

For that reason, we recommend you always use case in place of cond for this
special case. In general, case is not applicable to any other cases.

6.3 When to use when and unless

In situations when an if with only one branch (either the then-branch or the else-
branch) is called for, please use when and unless instead.

There are two advantages to using when and unless instead of if in these situ-
ation:

• they are much more economical in terms of whitespace,

• they are more precise [insert reference to chapter that talks about preciseness
once it is written].

Take for instance the following situation:

(if (some-test a b c)
(progn (some-calculation-1 a b c)

(some-calculation-2 a b c)
(some-calculation-3 a b c)
...))

Respecting the indentation rules of if and progn, the (some-calculation-x)
expressions need to be indented 11 positions compared to the if-expression itself.
Using when instead, we get:

(when (some-test a b c)
(some-calculation-1 a b c)
(some-calculation-2 a b c)
(some-calculation-3 a b c)
...)

with an indentation of only 2 positions.

6.3. WHEN TO USE WHEN AND UNLESS 23

When using when and unless, make sure the test is not negated with a not as
in:

BAD:

(when (not (some-test a b c))
(some-calculation-1 a b c)
(some-calculation-2 a b c)
(some-calculation-3 a b c)
...)

Instead use the opposite conditional:

GOOD:

(unless (some-test a b c)
(some-calculation-1 a b c)
(some-calculation-2 a b c)
(some-calculation-3 a b c)
...)

However, do not eliminate negations using null. Even though technically null
has the same definition as not, they are not morally equivalent; not is used to
negate a boolean expression whereas null is used to test whether a list is empty:

NOT GREAT:

(when (cdr stuff)
(some-calculation-1 a b c)
(some-calculation-2 a b c)
(some-calculation-3 a b c)
...)

GOOD:

(unless (null (cdr stuff))
(some-calculation-1 a b c)
(some-calculation-2 a b c)
(some-calculation-3 a b c)
...)

24 CHAPTER 6. CONDITIONALS

Chapter 7

Choice of Common Lisp idioms

In this chapter, we discuss the choice of various Common Lisp idioms and other
constructs.

7.1 let vs let*

It is preferable to use let whenever there is no sequential dependencies between
initializations of local variables. It is preferable to use let* to using nested let, even
though every initialization does not necessarily depend on the previous one. For
instance :

NOT GREAT:

(let ((x (f ...))
(y (g ...)))

(let ((z (h x)))
...))

BETTER:

(let* ((x (f ...))
(y (g ...))
(z (h x)))

...)

25

26 CHAPTER 7. CHOICE OF COMMON LISP IDIOMS

7.2 not vs null

While not and null are operationally equivalent, they are not morally equivalent.

Using not signals to the reader that the argument is intended to be of type boolean.

The function null, on the other hand, signals to the reader that the argument is a
list .

These conventions have some consequences for testing for empty lists in condi-
tionals such as when and unless. For instance:

BAD:

(when l
...)

(unless l
...)

GOOD:

(unless (null l)
...)

(when (null l)
...)

7.3 incf, decf, 1+, 1-

While the functions incf , decf , 1+, 1- work for all types of numbers, their intended
use is for integers only. For rationals, floating point numbers and complex numbers,
we recommend the use of combinations of setf and the arithmetic operations + and
-.

7.4. CAR AND CDR VS FIRST AND REST 27

7.4 car and cdr vs first and rest

Traditional wisdom dictates that fist and rest be used when the argument is morally
a list , whereas car and cdr are supposed to be used when the argument is a more
general tree made up of cons cells.

While we recommend following this traditional wisdom, we tolerate the use of
car and cdr for lists, simply because such use is historically common and much
existing code does not follow the traditional wisdom.

7.5 Using combinations of car and cdr

When a program contains extensive use of long combinations of car and cdr such
as cadddr, one should suspect a problem of data representation.

Usually, the existence of such functions indicates that a data structure that should
have been represented as a class, is instead represented as a list.

At the very least, we recommend that specific accessors be defined, such as:

(defun first-name (person) (car person))
(defun last-name (person) (cadr person))
(defun address (person) (caddr person))

Such accessors allow for subsequent modifications of the data representation with-
out having to alter client code.

However, these days there are great advantages to using classes instead, in particu-
lar because they allow better type checking and generic function dispatch.

If you do have to work with lists to represent data types, we recommend you read
up on destructuring-bind . In particular as an alternative to writing something like:

(let ((first-name (car person))
(last-name (cadr person))
(address (caddr person)))

...)

we recommend you use:

28 CHAPTER 7. CHOICE OF COMMON LISP IDIOMS

(destructuring-bind (first-name last-name address) person
...)

7.6 Accumulating elements into a list

The traditional way of accumulating elements into a list is to use a combination
between push and nreverse like this:

(let ((acc ’()))
(do (...)

(... (nreverse acc))
(when ...
(push elem acc))))

Avoid in any case the use of append to add new elements to the end of the list,
and this for reasons of computational complexity. Using nreverse is preferable to
reverse, so as to avoid useless consing.

However, for this particular situation, we rather recommend using loop, as in:

(loop ...
when ... collect elem)

which is usually much shorter and more clear.

7.7 reduce vs apply

The Common Lisp standard allows for implementations to impose a limitation on
the number of arguments possible to a function call. While these limitations in
most implementations are quite high, there might still be a problem when apply is
used.

In the case of left-associative functions such as +, we recommend simply replac-
ing apply with reduce. For right-associative functions, use the keyword argument
:from-end t with reduce.

7.8. USING SETF WITH MORE THAN TWO ARGUMENTS 29

The use of apply remains acceptable when the length of the list is bounded and
known to be smaller than the limitation on the number of arguments in most im-
plementations.

7.8 Using setf with more than two arguments

The use of setf with more than two arguments can be very useful in certain situa-
tions. We recommend it over a sequence of uses of setf with two arguments. For
instance:

NOT GREAT:

(let ((...))
(setf x y)
(setf a b))

PREFERABLE:

(let ((...))
(setf x y

a b))

However, it is important that exactly two arguments be given on each line. For
instance:

BAD:

(let ((...))
(setf x y a b))

GOOD:

(let ((...))
(setf x y

a b))

30 CHAPTER 7. CHOICE OF COMMON LISP IDIOMS

When a pair of arguments to setf does not fit on a line, it is preferable not to use
more than two arguments. In this case, the arguments are aligned vertically. For
instance:

BAD:

(let ((...))
(setf (a-very-long "argument to setf requiring lots of room" 1 2 3)

(another-very-long "argument to setf requiring lots of room")
(yet-another-very-long "argument to setf requiring lots of room
(and-another "argument to setf requiring lots of room" 5 4)))

GOOD:

(let ((...))
(setf (a-very-long "argument to setf requiring lots of room" 1 2 3)

(another-very-long "argument to setf requiring lots of room"))
(setf (yet-another-very-long "argument to setf requiring lots of room

(and-another "argument to setf requiring lots of room" 5 4)))

7.9 The use of tagbody

The main use of tagbody is in code generated by macros. There are few justified
usages of tagbody in other code. An exception is for coding automata.

Chapter 8

Using conditions

handler-case vs handler-bind

error vs signal vs assert

conditions vs catch/throw. restarts

31

32 CHAPTER 8. USING CONDITIONS

Chapter 9

Using Common Lisp pathnames

Someone else had better write this chapter. –RS

pathnames are structured objects that represent paths in the filesystem. They are
usually pretty good at doing this: your functions that accept filenames should ac-
cept pathname designators.

To control where files are found/created, use *default-pathname-defaults* instead
of unportable directory-setting functions. Generally you should bind it with LET
instead of setting with SETF so that you don’t break any file access that may be
happening in other threads.

Logical pathnames are not as generally useful as you might think they are. These
are the rules which govern when you can use logical pathnames without getting
very surprised thirty minutes later:

* When all of the files will be created by the same Lisp implementation and only
ever accessed using that Lisp implementation

* and you can name them all using only uppercase letters, digits and the hyphen (-)

* and you don’t care too much about how they’re represented in the underlying file
system

That’s about it: pretend that you’ve got a filesystem image loopback mounted at
that point that only Lisp can look inside, and your expectations will be approxi-
mately correct.

33

34 CHAPTER 9. USING COMMON LISP PATHNAMES

http://ww.telent.net/diary/2002/8/#26.82823

Chapter 10

Multiprocessing/Threading

The Common Lisp standard does not define any primitives for multiprocessing or
threading. Most modern implementations support threads in some form, however.

It is hard to write large end-user applications without using threads. But using
threads effectively is not trivial either. In this chapter, we give some guidelines
concerning how to write thread-safe code. These guidelines do not only concern
authors of applications that do use threading, but also authors of libraries that might
be used by such applications.

10.1 The Common Lisp treading model

As we mentioned, the Common Lisp standard does not mention threads. In this
section, we give an overview of the Common Lisp threading model as implemented
by most systems.

Most Common Lisp implementations that have threads are not themselves thread
safe. This means that you cannot count on operations such as modifying a property
list or a hash table to be atomic, nor even safe. It is the responsibility of the appli-
cation or library author to make sure that either simultaneous access by different
threads cannot happen, or that such accesses are protected by primitives for mutual
exclusion.

In most Common Lisp implementations that have threads, the values of special
variables are shared between the creating and the created thread. Whenever such

35

36 CHAPTER 10. MULTIPROCESSING/THREADING

a variable is assigned to without being bound, the other thread sees the new value.
Whenever such a variable is bound, its storage becomes private to the thread.

10.2 Avoid global state

When writing applications or libraries, you may want to think of the possibility of
several simultaneous threads executing your code. For that reason, we recommend
that you avoid global state (unless the purpose is specifically to share information
between threads), in particular:

• do not use property lists of symbols that are shared between threads (which
they usually are);

• make sure special variables are bound before being assigned to;

10.3 Synchronization

Before SMP (symmetric multi processor) computers were invented, Common Lisp
implementations supporting threads counted on the fact that only one thread could
run at a given time, and that in order for a different thread to run, the scheduler had
to be invoked. It was thus safe to count on operations being atomic as long as one
could make sure that the scheduler did not run. This situation gave rise to a style of
programming using the primitive without-scheduling around a block of code that
had to be executed atomically.

Some modern Common Lisp implementations run on computers where the oper-
ating system (as opposed to the Common Lisp system) take care of the schedul-
ing. For these implementations, there may not be a primitive such as without-
scheduling, or it may not work as intended.

In addition, if the computer has more than one CPU, it is possible that two threads
run truly simultaneously so that it is impossible to guarantee atomicity by prevent-
ing the scheduler from running.

We recommend that you never use primitives such as without-scheduling, and in-
stead use primitives for mutual exclusion and condition variables.

Chapter 11

System construction

11.1 The asdf system construction tool

37

38 CHAPTER 11. SYSTEM CONSTRUCTION

Chapter 12

Object-oriented design

Common Lisp has the most powerful object system around. It is in many ways
completely different from that of other object-oriented languages such as Java and
C++.

In most other object-oriented languages, the class is at the center of the design.
This is not the case in Common Lisp. In this chapter, we review some object
terminology and give guidelines for object-oriented design.

12.1 Abstract data types

Good object-oriented design revolves around abstract data types. An abstract data
type is a data type defined by what you can do with it as opposed to how it is
represented in the computer. Here, “what you can do with it” is going to be one or
many collections of operations.

An operation is ...

A protocol is a collection of operations that share at least one abstract data type.

An abstract data type can participate in several different protocols.

The abstract data type is usually represented as a hierarchy of classes, but not
necessarily.

It is usually a good idea to create internal protocols as well, in order to facilitate

39

40 CHAPTER 12. OBJECT-ORIENTED DESIGN

extensions to the software.

structure vs class (we recommend using a class except when structure is necessary
for performance reasons)

slot-value and with-slots vs accessors. Reserve slot-value and with-slots for code
internal to the module (cf arrow in C)

Chapter 13

Misc stuff to be inserted in other
chapters

keyword arguments (avoid them for fast-executing functions)

* Keyword arguments: should probably be recommended when there are a) more
than three arguments b) when there is no "natural" way to order arguments c) for
multiple optional arguments. Use of optional and keyword arguments togather
should be discouraged. Possible performace penalty of keyword arguments should
not be emphasized, except in a separate section on optimization.

tagbody (use only in macro bodies)

41

Index

+, 26, 28
-, 26
1+, 26
1-, 26

append, 28
apply, 28, 29

boolean, 26

cadddr, 27
car, 27
cdr, 27
comment, 13
conditional, 26
cons, 27
consing, 28

decf, 26
destructuring-bind, 27

fist, 27

incf, 26

let, 25
let*, 25
list, 26, 27
loop, 28

not, 26
nreverse, 28
null, 26

push, 28

reduce, 28
rest, 27
reverse, 28

setf, 26, 29, 30

tagbody, 30
tree, 27

unless, 26

when, 26
without-scheduling, 36

42

