Recherche Opérationnelle TD 4 – Modélisation

1 Exercice 1:

Une entreprise fabrique deux produits P_1 et P_2 . La fabrication de ces produits nécessite du temps de travail (main d'oeuvre), du temps-machine et de la matière première. Les coefficients techniques de production ainsi que les prix de vente par unité de produit sont fournis dans le tableau suivant :

	P_1	P_2
Quantité de "travail" (exprimés en heures)		
nécessaire à la fabrication d'une unité.	0.75 h	0.5 h
Quantité de "temps-machine" (en h.)		
nécessaire à la fabrication d'une unité	1.5 h	0.8 h
Quantité de matière première (exprimée		
en nombre d'unité u) nécessaire à la		
fabrication d'une unité de produit	2u	$1\mathrm{u}$
Prix de vente par unité (exprimé		
en unités monétaires : u.m)	$15 \mathrm{u.m}$	8 u.m

Chaque semaine 400 unités de matière première au plus, peuvent être achetées à un prix de 1,5 u.m par unité.

L'entreprise emploie 4 personnes qui travaillent chacune 40 heures par semaine. La nature de leur travail est la main d'oeuvre. Ces personnes peuvent effectuer des heures supplémentaires qui sont payées à 6 u.m. l'unité.

Chaque semaine, la disponibilité en temps machine est de 320h.

En absence de publicité, la demande hebdomadaire du produit P_1 serait de 50 unités, celle de P_2 de 60 unités; mais on peut réaliser de la publicité pour développer les ventes, chaque unité monétaire dépensée en publicité sur P_1 (respectivement sur P_2) augmente la demande hebdomadaire de P_1 (resp. p_2) de 10 unités (resp. de 15 unités). Les frais de publicité ne doivent pas dépasser 100 u.m par semaine.

Les quantités de P_1 et P_2 fabriquées doivent rester inférieures ou égales à la demande réelle (compte-tenu de la publicité).

On définit les 6 variables suivantes :

- $-X_1$: nombre d'unités du produit 1 fabriquées par semaine.
- $-X_2$: nombre d'unités du produit 2 fabriquées par semaine.
- -HS: nombre total d'heures supplémentaires effectuées par semaine.
- -MP: nombre d'unités de matière première achetées par semaine.
- $-PUB_1$: nombre d'unités monétaires dépensées en publicité sur P_1
- $-PUB_2$: nombre d'unités monétaires dépensées en publicité sur P_1

L'entreprise désire fixer la valeur de chacune de ces variables de manière à maximiser son bénéfice :

Bénéfice = Chiffre de vente - Somme des coûts variables

Le salaire (coût des heures normales) des quatre personnes est un coût fixe pour l'entreprise.

Question : modéliser le problème à l'aide des six variables qui sont proposées, sous forme de programme linéaire. La résolution n'est pas demandée.

2 Exercice 2

On désire déterminer la composition, à coût minimal, d'un aliment pour bétail qui est obtenu en mélangeant au plus trois produits brut :

- Orge,
- arachide,
- sésame.

L'aliment ainsi conditionné devra comporter (pour se conformer aux exigences de la clientèle) au moins

- 22% de protéines,
- 3.6% de graisses,

On a indiqué ci-dessous les pourcentages de protéines et de graisses contenues, respectivement, dans l'orge, les arachides et le sésame, ainsi que le coût par tonne de chacun des produits bruts :

produit brut	orge	arachides	sésame	pourcentage requis
pourcentages de protéines	12%	52%	42%	22%
pourcentages de graisses	2%	2%	10%	3.6%
coût par tonne	25	41	39	

Questions:

- 1. On notera $x_j = (j = 1, 2, 3)$ la fraction de tonne de produit brut j contenu dans une tonne d'aliment. Formuler le problème algébriquement.
- 2. Montrer qu'il est possible de réduire la dimension du problème en exprimant la variables x_1 en fonction des variables x_2 et x_3 , ce qui revient à travailler sur le plan (O, x_2, x_3) .
- 3. Résolvez ce problème géométriquement.

3 Exercice 3:

Un atelier peut fabriquer trois types d'articles :

- l'article A_1 à la cadence de 35 objets à l'heure.
- l'article A_2 à la cadence de 45 objets à l'heure.
- -l'article ${\cal A}_3$ à la cadence de 20 objets à l'heure.

Cette fabrication utilise une machine-outil unique, disponible 200 heures par mois.

Le bénéfice unitaire pour l'article A_1 est de 60 francs par objet, pour A_2 de 40 francs, pour A_3 de 80 francs. Ces objets sont vendus en totalité à des grossistes; on a observé qu'on ne pouvait écouler, par mois, plus de 4900 objets du type A_1 , ni plus de 5400 objets du type A_2 , ni plus de 2000 objets du type A_3 .

D'autre part, chaque objet doit être vérifié avant sa commercialisation; une équipe de trois techniciens est chargée de cette mission; chaque technicien travaille 170 heures par mois. La vérification d'un objet du type A_1 prend quatre minutes, du type A_2 , trois minutes, du type A_3 , deux minutes.

Question : Montrer qu'une contrainte est redondante (c'est-à-dire qu'elle est impliquée par une ou plusieurs autres). Interpréter géométriquement cette redondance.

 $\underline{\text{Question}}: \text{Classer alors les produits par bénéfice horaire décroissants et faire une résolution économique de ce problème.}$