
Heuristics for a Matrix Symmetrization Problem∗

EL AFRIT Mohamed Amine

January 2009

Abstract

The problem considered in this document is: let a square, non symmetric, (0, 1)-matrix, find a permutation of
its columns that yields a zero-free diagonal and maximizes the symmetry. The problem is known to be NP-hard.
A fast iterative-improvement based heuristic is proposed and the performance of the heuristic will be evaluated
on a large set of matrices.

1 Context

In this work focuses on the optimization version of the matrix symmetrization with zero-free diagonal problem.
The problem arises in a preprocessing phase of some other algorithms. For example, when a given sparse matrix
A has an unsymmetric pattern, most of the graph partitioning and ordering algorithms are applied to the pattern
of the symmetric completion A + AT [2] [3] [4]. Parallel solvers use parallel tree which are defined only for a
symmetric pattern matrices, we also need to have a symmetric matrix [3] for this kind of problem.

The techniques proposed in this work can be used to make a given matrix more symmetric and obtain a
sparser symmetric completion. In other words, the proposed techniques can help to improve the running time
of the aforementioned algorithms and their solutions’ quality.

Since the decision problem is NP-complete, and hence the optimization version of the symmetrisation problem
is NP-hard, the solution that is proposed here is a heuristic algorithm. The heuristic is tested on a large set of
matrices [5].

2 Some definitions and well-known results

2.1 Definitions

Definition 2.1. Bipartite graph associated to a matrix [6]

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

A bipartite graph (or bigraph) is a graph whose vertices can be divided into two independent disjoint sets R
and C such that every edge connects a vertex in R to one in C.
Here the two sets R and C correspond, respectively, to the rows and the columns of out initial matrix to be
symmetrized.
A bipartite graph G = (R

S

C, E) is associated to the matrix A that we want to symmetrize, where R and C
are the two sets in the vertex bipartition, and E is the set of edges. Here, the vertices in R and C correspond,
respectively, to the rows and the columns of A such that (ri, cj) ∈ E if and only if aij = 1. Although the
edges are undirected, we will always specify an edge e ∈ E as e = (ri, cj); the first vertex will always be a row
vertex and the second one will always be a column vertex. An edge e = (ri, cj) is called to be incident on the
vertices ri and cj

Definition 2.2. Notation
˛

˛

˛

˛

˛

˛

N(ri) denotes the neighbors of a row vertex ri,
d(.) denotes the degree of a vertex, e.g., d(ri) = |N(ri)|;
wij denotes the weight of an edge (ri, cj).

∗This note is a summary of Bora Uçar publication entitled “Heuristics for a Matrix Symmetrization Problem” [1]. This work was
supported by ”Agence Nationale de la Recherche”, ANR-06-CIS6-010.

1

Definition 2.3. M-alternating cycle

| Given a matching M, an M-alternating cycle is a simple cycle whose edges are alternately in M and not in M,

Definition 2.4. The symmetry score

˛

˛

˛

˛

For a given square (0,1)-matrix A, the symmetry score is defined as S(A) =
X

aij 6=0

aij .aji

2.2 Well-known results

1. An even cycle contains an even number of vertices,

2. A set of edges M is a matching if no two edges in M are incident on the same vertex,

3. A matching is called perfect if for any vertex v in G, there is an edge in M incident on v,

4. mate(v) is used to denote the vertex matched to the vertex v in a matching M,

5. A perfect matchings in the bipartite graph G correspond to permutations which yield zero-free diagonals
we define the permutation matrix M as mij = 1 if (ri, cj) ∈ M and 0 otherwise [7],

6. Let M∗ and M be, respectively, an optimal perfect matching maximizing the symmetry score, and another
perfect matching on the bipartite graph G. Then the symmetric difference M

L

M = (M r M)
S

(M r M)
contains only isolated vertices and even cycles,

7. Let C4 be the set of unique alternating cycles of length four, then the score will be S(AM) = n + 2× |C4|

8. A vertex v can be in at most d(v) − 1 alternating cycles.

9. For any matching M with (ri, cj) ∈ M, the contribution of the matching edge (ri, cj) to S(AM) is limited
by min{d(ri), d(cj)}

3 The heuristic

This heuristic works on the bigraph representation of a matrix. It starts with a perfect matching to guaran-
tee a zero-free diagonal, and then iteratively improves the current matching to increase the symmetry while
maintaining a perfect matching at all times.

Algorithme 1 Compute the symmetry score

Require: a bipartite graph G = (R ∪ C,E) corresponding to an n× n matrix A

Require: a perfect matching
Ensure: score = S(AM)

mark(r) ← 0 for all r ∈ R

score ← 0
for all (ri, cj) ∈ M do

for all c ∈ N(ri) do

mark(mate(ci)) ← j
end for

for all (ri, cj) ∈ M do

if mark(r) = j then

score ← score + 1
end if

end for

end for

Consider two matching edges (ri, cj) and (rk, cl) such that (ri, cl) ∈ E and (rk, cj) ∈ E. These four edges
form an M-alternating cycle of length four.

The refinement process is organized in passes (such as that in [?]). At each pass, we build the set C4 of
unique alternating cycles of length four using an algorithm much like Algorithm 1

We visit the unique alternating cycles of length four in a random order. Among the cycles those whose
vertices are not affected by a previous operation and with a non-negative effect on symmetry score are

reversed i.e; for example the alternating cycle {(ri, cj) , (rk, cl)} will be {(ri, cl) , (rk, cj)}

2

Algorithme 2 Refine a perfect matching

Require: a bipartite graph G = (R ∪ C,E) corresponding to an n× n matrix A

Require: a perfect matching
Ensure: an other perfect matching M (1) where S(AM (1)) ≥ S(AM (0))

M (1) ←M (0)

C4← (r1, c1, r2, c2) : (r1, c1) ∈M (1) and (r2, c2) ∈M (1) and (r1, c2) ∈ E and (r2, c1) ∈ E

while C4 6= 0 do

pick a cycle C = (r1, c1, r2, c2) ∈ C4
if isReversible(C) and gain(C) ≥ 0 then

M (1) ←M (1)
⊕

C

end if

remove the cycle C from C4
end while

The test isReversible(C) returns true if the current matching contains the edges (r1, c1) and (r2, c2).
The gain is computed by using the main ”for loop” of Algorithm 1 for the edges (r1, c1) and (r2, c2), and

then for the edges (r1, c2) and (r2, c1). The difference between the returned scores gives the gain of reversing
the edges in the cycle C.

3.1 Deficiencies

1. The set of alternating cycles of length four, C4, is constructed according to the initial matching,

2. Each cycle in C4 is considered at most once,

3. Due to the nonnegative gain requirement, the algorithm cannot escape from a local minimum.

3.2 Ameliorations

Having observed these deficiencies, two alternatives were designed :

First alternative The first alternative starts with the same set C4 as in Algorithm 2 with more involved
data structures and operations. It maintains C4 as a priority queue using the gain of a cycle as its key; tenta-
tively modifies the current matching along the best cycle, even along those with a negative effect; at the end,
realizes the most profitable prefix of modifications.

⇒ This approach obtained better results than Algorithm 2, with increases in running time.

Second alternative The second alternative visits the row vertices in a random order, computes the best
length four alternating cycle containing that vertex, and modifies the current matching along that cycle if the
gain is nonnegative.

⇒ Algorithm 2 outperformed this alternative in terms of solution quality.

3.3 Initialization of the algorithm

Here the aim is to find an upper bound on the attainable symmetry score.
Consider a maximum weight perfect matching M∗

B1 , subject to edge weights wij = min{d(ri), d(cj)}, in the
bipartite graph G. The weight w(M∗

B1) defines an upper bound, referred to as UB1.
We can obtain an improved upper bound by observing that all neighbors of the vertex ri may not be matchable

to the neighbors of cj two vertices ri and cj can contribute at most by the weight of the maximum weight matching
M∗

ij (with unit edge weights), in the induced subgraph Gij = (N(cj)
S

N(ri), E
T

N(cj) × N(ri)). Consider a
maximum weight perfect matching MB2, subject to edge weights wij = w(M∗

ij), in G. The weight w(MB2)
defines an upper bound, referred to as UB2.

⇒ Both of the perfect matchings MB1 and MB2 can be used as an initial solution. we have w(M∗
B2) 6

w(M∗
B1).

It is better to use M∗
B1 as an initial solution because the CPU cost of finding M∗

B2 can be very high.

3

4 Experiments

The heuristic was tested with two sets of square matrices from University of Florida Sparse Matrix Collection
[5].

Matrices in the first set originally have symmetric nonzero pattern and full sparse rank, and they satisfy the
following assertions regarding the order n and the number of nonzeros nnz :

� n > 1000,

� nnz 6 106 ,

� nnz > 3 × n.

There were a total of 420 such matrices
The original matrices have zero-free diagonal. If B is the pattern of an original matrix, then the corresponding

matrix A in this set has the pattern of P (B + I)Q, where I is the n × n identity matrix, and P and Q are
random permutation matrices.

The matrices in the second set are the 28 public domain matrices used in [7]. These matrices are highly
unsymmetric. For these 28 matrices, there are zeros in the main diagonal and the optimal symmetry score is
not known.

In the experiments, initial matching M (0) is chosen to be M∗
B1 , the perfect matching that defines the upper

bound UB1.
Most of the improvements are obtained within the first few passes. In practice the number of refinement

passes is limited to five, i.e., Algorithm 2 is applied five times.
The average symmetry score 0.628 of M (0) is improved by around 38% in five refinement passes, resulting in

an average symmetry score of 0.872 for M (5).

5 Conclusion

This work proposed a heuristic to solve the matrix symmetrization with zero-free diagonal problem. The heuristic
starts from a judiciously chosen initial solution and iteratively improves it. Experiments were presented on two
sets of matrices. The solutions found by the proposed heuristic are, on average, around 0.87 of the exact solutions
for the 420 matrices

Acknowledgments

The analysis of this article gave me the apportunity to have an experience in the domain of researching in
computer science.
I thank Pierre Ramet and Bora Uçar because they helped me to understand and to sum up this article.

References

[1] Bora Uçar. Heuristics for a Matrix Symmetrization Problem. CERFACS 42 Avenue Gaspard Corio-
lis, 31057, Toulouse, Cedex 1, France (ubora@cerfacs.fr). http://graal.ens-lyon.fr/~bucar/abstracts/

UcarSymmetrize.html.

[2] T.G Hendrickson, B.Kolda. Partitioning rectangular and structurally unsymmetric sparse matrices for par-
allel processing. Technical report. SIAM Journal on Scientific Computing.

[3] P. Ramet P. Hénon and J. Roman. A High-Performance Parallel Direct Solver for Sparse Symmetric Definite
Systems.

[4] E. Lawler. Combinatorial optimization: Networks and matroids. Technical report. Dover, Mineola, New
York (unabridged reprint of Combinatorial Optimization: Networks and Matroids, originally published by
New York: Holt, Rinehart, and Wilson, c1976) (2001).

[5] T.Davis. University of florida sparse matrix collection na digest 92/96/97 (1994/1996/1997). Technical
report. http://www.cise.ufl.edu/research/sparse/matrices.

[6] web. Cours et notions sur les graphes. Technical report. http://fr.wikipedia.org ...

[7] Koster J. Duff, I.S. On algorithms for permuting large entries to the diagonal of a sparse matrix. Technical
report, SIAM Journal on Matrix Analysis and Applications 22, 973-996 (2001).

4

